CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
基本信息
- 批准号:2340516
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) systems are integral to a broad spectrum of applications, encompassing safety-critical and life-critical domains. However, hardware failures and design bugs have been observed during AI system deployment, leading to system malfunctions and potential consequences such as financial losses, reduced productivity, and even loss of human life. Furthermore, these issues directly impact hardware security and system sustainability. Existing solutions aimed at addressing these issues suffer from one or both of the following limitations: (1) high costs in terms of execution time, power consumption, hardware footprint, and/or data storage resources; and (2) limited coverage, as existing solutions are only capable of addressing a subset of these problems. This project will overcome these limitations through a fresh set of novel hardware-algorithm co-design approaches to simultaneously minimize costs and enhance coverage, advancing the state-of-the-art through an interdisciplinary combination of knowledge in computer architecture, robust system design, and machine learning. Successful completion of this project promises to mark a significant leap forward for AI systems, enabling them to be more efficient, reliable, trustworthy, and sustainable. Additionally, the project will enhance computer architecture education through creative visualization means and workshops especially targeting students in under-resourced high schools. The project also also places emphasis on promoting diversity and facilitating technology transfer.This project encompasses three interconnected thrusts. The first thrust focuses on creating end-to-end approaches to fundamentally understand the impact of hardware failures and bugs on advanced deep learning workloads, mitigate these challenges through hardware-algorithm co-design, and incorporate a user study to explore adaptive architectural solutions tailored to individual users' needs. The second thrust targets the design of AI hardware for fine-grained mixed-precision deep neural networks. This involves creating a co-design framework to facilitate the co-evolution of hardware and software, optimizing accelerators for these networks, and simultaneously tailoring network models to these accelerators through a feedback loop, addressing susceptibility to design bugs. The last thrust explores an innovative approach for generating network parameters instead of storing them. The parameter generation algorithm will be integrated into training algorithms to optimize network accuracy and minimize area, power, and storage costs, while also addressing reliability and security threats posed by system memories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)系统是广泛应用的组成部分,包括安全关键和生命关键领域。然而,在人工智能系统部署过程中观察到硬件故障和设计缺陷,导致系统故障和潜在后果,如财务损失,生产力下降,甚至人命损失。此外,这些问题直接影响硬件安全性和系统可持续性。旨在解决这些问题的现有解决方案遭受以下限制中的一个或两个:(1)在执行时间、功耗、硬件占用空间和/或数据存储资源方面的高成本;以及(2)有限的覆盖范围,因为现有解决方案仅能够解决这些问题的子集。该项目将通过一套新的硬件算法协同设计方法来克服这些限制,同时最大限度地降低成本并提高覆盖率,通过计算机体系结构,鲁棒系统设计和机器学习知识的跨学科组合来推进最先进的技术。 该项目的成功完成有望标志着人工智能系统的重大飞跃,使其更加高效,可靠,值得信赖和可持续。此外,该项目将通过创造性的可视化手段和讲习班,特别是针对资源不足的高中学生,加强计算机体系结构教育。该项目还强调促进多样性和便利技术转让,包括三个相互关联的重点。第一个重点是创建端到端的方法,从根本上了解硬件故障和错误对高级深度学习工作负载的影响,通过硬件算法协同设计减轻这些挑战,并结合用户研究来探索针对个人用户需求的自适应架构解决方案。第二个目标是为细粒度混合精度深度神经网络设计AI硬件。这涉及到创建一个协同设计框架,以促进硬件和软件的协同进化,优化这些网络的加速器,同时通过反馈回路为这些加速器定制网络模型,解决设计缺陷的敏感性。最后一个推力探索了一种创新的方法来生成网络参数,而不是存储它们。参数生成算法将被集成到训练算法中,以优化网络精度,最大限度地减少面积、功耗和存储成本,同时解决系统存储器带来的可靠性和安全威胁。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanjing Li其他文献
Targeting CXCR2+ Neuroendocrine-like Cells for the Treatment of Castration-resistant Prostate Cancer
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yanjing Li - 通讯作者:
Yanjing Li
Robust System Design
稳健的系统设计
- DOI:
10.2197/ipsjtsldm.4.2 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
S. Mitra;Hyung;Ted Hong;Young Moon Kim;Hsiao;L. Leem;Yanjing Li;D. Lin;E. Mintarno;Diana Mui;Sung;N. Patil;Hai Wei;Jie Zhang - 通讯作者:
Jie Zhang
Progress in Structural and Functional Studies of Histone Methyltransferase MLL 1
组蛋白甲基转移酶MLL 1结构与功能研究进展
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yanjing Li;Chen Yong - 通讯作者:
Chen Yong
DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells
DDX18 协调核仁相分离和核组织以控制人类胚胎干细胞的多能性
- DOI:
10.1038/s41467-024-55054-8 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:15.700
- 作者:
Xianle Shi;Yanjing Li;Hongwei Zhou;Xiukun Hou;Jihong Yang;Vikas Malik;Francesco Faiola;Junjun Ding;Xichen Bao;Miha Modic;Weiyu Zhang;Lingyi Chen;Syed Raza Mahmood;Effie Apostolou;Feng-Chun Yang;Mingjiang Xu;Wei Xie;Xin Huang;Yong Chen;Jianlong Wang - 通讯作者:
Jianlong Wang
Tunneling spectroscopy of graphene using planar Pb probes
使用平面 Pb 探针的石墨烯隧道光谱
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yanjing Li;N. Mason - 通讯作者:
N. Mason
Yanjing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanjing Li', 18)}}的其他基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Electronic-Photonic Integration Using the Transistor Laser for Energy-Efficient Computing
E2CDA:类型 I:协作研究:使用晶体管激光器实现节能计算的电子光子集成
- 批准号:
1640192 - 财政年份:2016
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
相似海外基金
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Research Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
- 批准号:
2336356 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Research Grant
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
- 批准号:
2339596 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant