Robust and Generalizable AI Models for Label-free Cellular Organelle Identification

用于无标记细胞器识别的稳健且可推广的人工智能模型

基本信息

  • 批准号:
    2325121
  • 负责人:
  • 金额:
    $ 67.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Light microscopy is an essential research tool for characterizing cell's internal organs, known as organelles. Unfortunately, it is often challenging to experimentally label these structures for visualization without substantially disturbing the cells. Recent studies have shown that artificial intelligence (AI) can virtually label organelles in microscope images. Despite the promising potential, AI techniques have not been widely used due to the complicated AI training processes and requirement of large training data. To overcome such obstacles, this project will develop two groundbreaking AI image translation features. First, the research team will implement a transfer learning technique that allows the AI model to apply its previous learning experiences to new tasks, reducing the need of training images. Second, the research team will develop an adaptation mechanism to ensure accurate and consistent predictions across different imaging conditions, enabling model transfer and sharing between different laboratories. This new bioinfrastructure will provide scientists with a valuable tool for visualizing organelles and important biological processes within living cells. The project will support education and diversity through the recruitment of underrepresented researchers.Light microscopy is an essential research tool for characterizing cell's internal organs, known as organelles. Unfortunately, it is often challenging to experimentally label these structures for visualization without substantially disturbing the cells. Recent studies have shown that artificial intelligence (AI) can virtually label organelles in microscope images. Despite the promising potential, AI techniques have not been widely used due to the complicated AI training processes and requirement of large training data. To overcome such obstacles, this project will develop two groundbreaking AI image translation features. First, the research team will implement a transfer learning technique that allows the AI model to apply its previous learning experiences to new tasks, reducing the need of training images. Second, the research team will develop an adaptation mechanism to ensure accurate and consistent predictions across different imaging conditions, enabling model transfer and sharing between different laboratories. This new bioinfrastructure will provide scientists with a valuable tool for visualizing organelles and important biological processes within living cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学显微镜是表征细胞内部器官(称为细胞器)的重要研究工具。不幸的是,它往往是具有挑战性的实验标记这些结构的可视化,而基本上不干扰细胞。最近的研究表明,人工智能(AI)可以在显微镜图像中标记细胞器。尽管人工智能技术具有很大的潜力,但由于人工智能训练过程复杂,需要大量的训练数据,因此尚未得到广泛应用。为了克服这些障碍,该项目将开发两个突破性的人工智能图像翻译功能。首先,研究团队将实施一种迁移学习技术,允许AI模型将其先前的学习经验应用于新任务,从而减少对训练图像的需求。其次,研究团队将开发一种适应机制,以确保在不同成像条件下准确和一致的预测,从而实现不同实验室之间的模型转移和共享。这种新的生物基础设施将为科学家提供一种有价值的工具,用于可视化活细胞内的细胞器和重要的生物过程。该项目将通过招募代表性不足的研究人员来支持教育和多样性。光学显微镜是表征细胞内部器官(称为细胞器)的重要研究工具。不幸的是,它往往是具有挑战性的实验标记这些结构的可视化,而基本上不干扰细胞。最近的研究表明,人工智能(AI)可以在显微镜图像中标记细胞器。尽管人工智能技术具有很大的潜力,但由于人工智能训练过程复杂,需要大量的训练数据,因此尚未得到广泛应用。为了克服这些障碍,该项目将开发两个突破性的人工智能图像翻译功能。首先,研究团队将实施一种迁移学习技术,允许AI模型将其先前的学习经验应用于新任务,从而减少对训练图像的需求。其次,研究团队将开发一种适应机制,以确保在不同成像条件下准确和一致的预测,从而实现不同实验室之间的模型转移和共享。这个新的生物基础设施将为科学家提供一个有价值的工具,用于可视化活细胞内的细胞器和重要的生物过程。这个奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Lin其他文献

Using Histologic Image Analysis to Understand Biophysical Regulations of Epithelial Cell Morphology
使用组织学图像分析了解上皮细胞形态的生物物理调控
  • DOI:
    10.35459/tbp.2023.000253
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandra Bermudez;Samanta Negrete Muñoz;Rita Blaik;Amy C. Rowat;Jimmy Hu;Neil Lin
  • 通讯作者:
    Neil Lin
Teaching biophysics of epithelial cell morphology using commercial histological samples
  • DOI:
    10.1016/j.bpj.2023.11.1906
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Alexandra G. Bermudez;Samanta Negrete Munoz;Rita Blaik;Amy C. Rowat;Jimmy Hu;Neil Lin
  • 通讯作者:
    Neil Lin
Cell crowding-induced geometric constraint regulates chromatin organizations
  • DOI:
    10.1016/j.bpj.2023.11.2493
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Alexandra G. Bermudez;Zoe Latham;Jimmy Hu;Neil Lin
  • 通讯作者:
    Neil Lin
Nucleo-cytoskeletal coupling leads to anti-correlation between cytoplasmic and nuclear strains
  • DOI:
    10.1016/j.bpj.2023.11.884
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Jerry C. Chen;Iris Sloan;Alexandra G. Bermudez;Jimmy Hu;Neil Lin
  • 通讯作者:
    Neil Lin

Neil Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Lin', 18)}}的其他基金

Deciphering the Drug Synergy in Pharmacological Rejuvenation of Mesenchymal Stromal Cells
解读间充质基质细胞药理再生中的药物协同作用
  • 批准号:
    2244760
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Standard Grant
Rheo-Control 3D Printing: Tuning Suspension Viscosity for Fabricating Functional Materials with Gradient Properties
Rheo-Control 3D 打印:调节悬浮液粘度以制造具有梯度特性的功能材料
  • 批准号:
    2029454
  • 财政年份:
    2020
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Standard Grant
CAREER: Learning Generalizable and Interpretable Embodied AI with Human Priors
职业:利用人类先验学习可概括和可解释的具体人工智能
  • 批准号:
    2339769
  • 财政年份:
    2024
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Continuing Grant
Incorporating Diversity in Alzheimer's Disease Research: Developing Representative and Generalizable models
将多样性纳入阿尔茨海默病研究:开发代表性和可推广的模型
  • 批准号:
    495662
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Operating Grants
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
Collaborative Research: A generalizable data framework towards Precision Radiotherapy.
协作研究:精准放射治疗的通用数据框架。
  • 批准号:
    2313443
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Standard Grant
Bilevel Optimization for Training Generalizable Language Models
用于训练可推广语言模型的双层优化
  • 批准号:
    23K16940
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geles: A Novel Imaging Informatics System for Generalizable Lesion Identification in Neuroendocrine Tumors
Geles:一种用于神经内分泌肿瘤普遍病变识别的新型影像信息学系统
  • 批准号:
    10740578
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
Scalable and Interoperable framework for a clinically diverse and generalizable sepsis Biorepository using Electronic alerts for Recruitment driven by Artificial Intelligence (short title: SIBER-AI)
使用人工智能驱动的招募电子警报的临床多样化和通用脓毒症生物库的可扩展和可互操作框架(简称:SIBER-AI)
  • 批准号:
    10576015
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
Real-Time & Generalizable Flood Simulation Emulator using Numerical Analysis and Machine Learning
即时的
  • 批准号:
    23KJ1685
  • 财政年份:
    2023
  • 资助金额:
    $ 67.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了