Rheo-Control 3D Printing: Tuning Suspension Viscosity for Fabricating Functional Materials with Gradient Properties
Rheo-Control 3D 打印:调节悬浮液粘度以制造具有梯度特性的功能材料
基本信息
- 批准号:2029454
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports research that will contribute new knowledge related to an additive manufacturing process, promoting both the progress of science and advancing national prosperity. Additive manufacturing, often called 3D printing, plays a pivotal role in the rapid design and fabrication of technological devices without the need for expensive tooling and long turnaround times. However, high-performance 3D printing of functional devices, such as energy-absorbing materials, wearable electronics, and morphing structures, remains a major challenge. Such limitations in performance are largely attributed to the difficulty in extruding highly functional inks and actively controlling their properties. This award supports fundamental research to provide knowledge for developing a 3D printing process that extrudes high-performance inks with tunable properties. The new printing technology will improve the performance of current 3D-printed devices and unlock new designs in material fabrication, bio-manufacturing, and customizable electronic production. Therefore, results from this research will greatly benefit the U.S. economy and society. This research involves multiple disciplines including fluid mechanics, microfabrication, and materials science. This transdisciplinary approach will help broaden participation of underrepresented groups in research and promote equity and inclusion in engineering education.Functional inks in 3D printing are often extremely viscous due to the required high filler content, and they often exhibit shear jamming that leads to catastrophic nozzle clogging. Moreover, the inability to alter ink properties, such as rigidity, conductivity, and thermal response, constrains manufacturing and thus inhibits the potential of realizing many new designs. To address such a challenge, this research will develop an understanding of and strategies for controlling functional ink properties via ultrasonic acoustic fields during extrusion. The hypothesis builds upon recent advances in thickening suspensions, in which high-frequency perturbations can be used to manipulate the microstructure of viscous fluids and substantially reduce their flow resistance. Specifically, this project will investigate the relationship between the mechanical properties of a particle-based model ink and the ink’s acoustically altered microstructure. The integration of these findings will lead to the development of design principles and perturbation protocols for building printing platforms. The project will explore two perturbation approaches: first, the simple attachment of a piezoelectric to a printing nozzle, and second, the engineering of an acoustic patterning device that precisely controls the ink microstructure. Collectively, these experiments will provide a foundation for developing active control of ink properties for printing functional devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项拨款支持将贡献与增材制造工艺相关的新知识的研究,促进科学进步和促进国家繁荣。增材制造,通常被称为3D打印,在技术设备的快速设计和制造中起着关键作用,而不需要昂贵的工具和长时间的周转时间。然而,功能设备的高性能3D打印,如吸能材料、可穿戴电子产品和变形结构,仍然是一个主要挑战。这种性能上的限制很大程度上归因于挤出高功能油墨和主动控制其性能的困难。该奖项支持基础研究,为开发具有可调性能的高性能油墨的3D打印过程提供知识。新的打印技术将提高当前3d打印设备的性能,并在材料制造、生物制造和可定制电子生产方面开启新的设计。因此,这项研究的结果将极大地造福于美国的经济和社会。这项研究涉及多个学科,包括流体力学、微加工和材料科学。这种跨学科的方法将有助于扩大代表性不足的群体在研究中的参与,并促进工程教育的公平和包容。由于所需的高填充含量,3D打印中的功能油墨通常非常粘稠,并且它们经常表现出剪切堵塞,导致灾难性的喷嘴堵塞。此外,无法改变油墨的性质,如刚性、导电性和热响应,限制了制造,从而抑制了实现许多新设计的潜力。为了解决这一挑战,本研究将开发通过挤压过程中的超声波声场来控制功能性油墨特性的理解和策略。该假设建立在增稠悬浮液的最新进展之上,其中高频扰动可用于操纵粘性流体的微观结构并大大降低其流动阻力。具体来说,该项目将研究基于颗粒的模型墨水的机械性能与墨水的声学改变的微观结构之间的关系。这些发现的整合将导致设计原则和微扰协议的发展,以建立印刷平台。该项目将探索两种微扰方法:第一,将压电装置简单地附着在印刷喷嘴上;第二,设计一种声学图案装置,精确地控制油墨的微观结构。总的来说,这些实验将为开发印刷功能设备的油墨性能主动控制提供基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supracellular Measurement of Spatially Varying Mechanical Heterogeneities in Live Monolayers.
- DOI:10.1016/j.bpj.2022.08.024
- 发表时间:2022-08
- 期刊:
- 影响因子:3.4
- 作者:Alexandra Bermudez;Zachary Gonzalez;Bao Zhao;Ethan Salter;Xuanqing Liu;Leixin Ma;M. Jawed;Cho-Jui Hsieh;Neil Y. C. Lin
- 通讯作者:Alexandra Bermudez;Zachary Gonzalez;Bao Zhao;Ethan Salter;Xuanqing Liu;Leixin Ma;M. Jawed;Cho-Jui Hsieh;Neil Y. C. Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Lin其他文献
Using Histologic Image Analysis to Understand Biophysical Regulations of Epithelial Cell Morphology
使用组织学图像分析了解上皮细胞形态的生物物理调控
- DOI:
10.35459/tbp.2023.000253 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexandra Bermudez;Samanta Negrete Muñoz;Rita Blaik;Amy C. Rowat;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Teaching biophysics of epithelial cell morphology using commercial histological samples
- DOI:
10.1016/j.bpj.2023.11.1906 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Alexandra G. Bermudez;Samanta Negrete Munoz;Rita Blaik;Amy C. Rowat;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Cell crowding-induced geometric constraint regulates chromatin organizations
- DOI:
10.1016/j.bpj.2023.11.2493 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Alexandra G. Bermudez;Zoe Latham;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Nucleo-cytoskeletal coupling leads to anti-correlation between cytoplasmic and nuclear strains
- DOI:
10.1016/j.bpj.2023.11.884 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Jerry C. Chen;Iris Sloan;Alexandra G. Bermudez;Jimmy Hu;Neil Lin - 通讯作者:
Neil Lin
Neil Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Lin', 18)}}的其他基金
Robust and Generalizable AI Models for Label-free Cellular Organelle Identification
用于无标记细胞器识别的稳健且可推广的人工智能模型
- 批准号:
2325121 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
Deciphering the Drug Synergy in Pharmacological Rejuvenation of Mesenchymal Stromal Cells
解读间充质基质细胞药理再生中的药物协同作用
- 批准号:
2244760 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Establishment of 3D structure control methods of 2D hexagonal BN and thermal management of resin using them.
建立2D六方BN的3D结构控制方法以及利用该方法对树脂进行热管理。
- 批准号:
23H01710 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fused Filament Fabrication of Porous PEEK and PEKK Spinal Cages: Which 3D Printing Conditions Control Static and Fatigue Strength?
多孔 PEEK 和 PEKK 脊柱笼的熔丝制造:哪种 3D 打印条件可以控制静电强度和疲劳强度?
- 批准号:
2326537 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Resilience design for 3D social interventions to dynamic control for a new emerging epidemic as social disaster
3D社会干预的弹性设计,以动态控制作为社会灾难的新出现的流行病
- 批准号:
23H03499 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging conformational control to access sp2-rich 3D platforms for drug discovery
利用构象控制访问富含 sp2 的 3D 平台进行药物发现
- 批准号:
2750553 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Studentship
Multi-scale 3D microstructural control of composite materials via powder assembly
通过粉末组装对复合材料进行多尺度 3D 微观结构控制
- 批准号:
22H01790 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
3D Pseudo-force Devices using High Frequency PWM Control
使用高频 PWM 控制的 3D 伪力装置
- 批准号:
22K12115 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quality control and progress monitoring from large-scale 3D point clouds
通过大规模 3D 点云进行质量控制和进度监控
- 批准号:
580274-2022 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Alliance Grants
Quality control in 3D printing by designing a local filament diameter sensor
通过设计局部细丝直径传感器进行 3D 打印质量控制
- 批准号:
572405-2022 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
University Undergraduate Student Research Awards