I-Corps: Trustworthy Medical Code Recommendations

I-Corps:值得信赖的医疗规范建议

基本信息

  • 批准号:
    2325785
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-15 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is to revolutionize the medical coding process by increasing the efficiency, accuracy, and explainability of artificially intelligence-driven computer-assisted coding systems. The innovation has the potential to reduce human effort and errors, streamline medical claims and billing processes, and integrate information systems across healthcare providers, payers, and insurance companies. The increased transparency and trustworthiness of artificially intelligent generated codes, in turn, would lead to faster processing and resolution of medical bills and claims with fewer rejections. As a result, healthcare providers will save costs on providing quality healthcare services with better patient outcomes. The project’s broader significance also lies in its applicability to information systems in other industries that rely on coding and structured information, such as pharmaceuticals, bio-medical, legal, and accounting.This I-Corps project is based on the development of an innovative technology that combines deep learning attention mechanisms with symbolic artificially intelligent, specifically knowledge graphs, to improve the explainability of computer-assisted coding models. The approach focuses on providing a deeper understanding of the relationships between highlighted words and predicted standard medical codes, thereby enhancing the accuracy and efficiency of the medical coding process. By addressing the need for increased transparency in artificially intelligent-driven medical coding systems, the project aims to advance the field of artificially intelligent explainability and contribute to the scientific understanding of the subject. The technology has the potential to pave the way for future advancements in artificially intelligent-driven coding systems in various domains and industries reliant on highly structured knowledge bases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个i-Corps项目的更广泛的影响/商业潜力是通过提高人工智能驱动的计算机辅助编码系统的效率、准确性和可解释性来彻底改变医学编码过程。这项创新有可能减少人为工作和错误,简化医疗索赔和账单流程,并整合医疗保健提供者、支付者和保险公司的信息系统。反过来,人工智能生成的代码的透明度和可信度的提高将导致更快地处理和解决医疗账单和索赔,并减少拒绝。因此,医疗保健提供者将在提供高质量医疗服务和更好的患者结果方面节省成本。该项目的更广泛的意义还在于它适用于其他依赖编码和结构化信息的行业的信息系统,如制药、生物医疗、法律和会计。该i-Corps项目基于一项创新技术的开发,该技术将深度学习注意机制与符号人工智能,特别是知识图相结合,以提高计算机辅助编码模型的可解释性。该方法侧重于更深入地理解突出显示的单词与预测的标准医疗编码之间的关系,从而提高医疗编码过程的准确性和效率。通过解决人工智能驱动的医疗编码系统中增加透明度的需求,该项目旨在推进人工智能可解释性领域,并促进对该主题的科学理解。这项技术有可能为人工智能驱动的编码系统在依赖于高度结构化知识库的各个领域和行业的未来进步铺平道路。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Syed Ahmad Chan Bukhari其他文献

A hybrid mental health prediction model using Support Vector Machine, Multilayer Perceptron, and Random Forest algorithms
使用支持向量机、多层感知器和随机森林算法的混合心理健康预测模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Mohamed;T. Naqishbandi;Syed Ahmad Chan Bukhari;Insha Rauf;Vilas Sawrikar;Arshad Hussain
  • 通讯作者:
    Arshad Hussain
Proficient Annotation Recommendation in a Biomedical Content Authoring Environment
生物医学内容创作环境中的熟练注释推荐
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbas, Asim;Mbouadeu, Steve;Bisram, Avinash;Iqbal, Nadeem;Syed Ahmad Chan Bukhari
  • 通讯作者:
    Syed Ahmad Chan Bukhari
Analysis of dimensionality reduction techniques on Internet of Things data using machine learning
  • DOI:
    10.1016/j.seta.2022.102304
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lubaba Rashid;Saddaf Rubab;Majed Alhaisoni;Abdullah Alqahtani;Shtwai Alsubai;Adel Binbusayyis;Syed Ahmad Chan Bukhari
  • 通讯作者:
    Syed Ahmad Chan Bukhari
Semantically: A Framework for Structured Biomedical Content Authoring and Publishing
语义上:结构化生物医学内容创作和发布的框架
Neuromechanical Signal-Based Parallel and Scalable Model for Lower Limb Movement Recognition
用于下肢运动识别的基于神经力学信号的并行和可扩展模型
  • DOI:
    10.1109/jsen.2021.3076114
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Nadeem Iqbal;Tufail Khan;Mukhtaj Khan;Tahir Hussain;Tahir Hameed;Syed Ahmad Chan Bukhari
  • 通讯作者:
    Syed Ahmad Chan Bukhari

Syed Ahmad Chan Bukhari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Syed Ahmad Chan Bukhari', 18)}}的其他基金

CRII: III: A Socio-technical Approach for Biomedical Content Authoring and Structured Web Publishing
CRII:III:生物医学内容创作和结构化网络发布的社会技术方法
  • 批准号:
    2101350
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404952
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
REU Site: Embracing Blockchain for a Secure and Trustworthy Tomorrow
REU 网站:拥抱区块链,打造安全可信的明天
  • 批准号:
    2349042
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Human-centric Digital Twin Approaches to Trustworthy AI and Robotics for Improved Working Conditions
以人为本的数字孪生方法,实现值得信赖的人工智能和机器人技术,以改善工作条件
  • 批准号:
    10109582
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    EU-Funded
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
CAREER: Secure and Trustworthy Intent-Based Networking
职业:安全且值得信赖的基于意图的网络
  • 批准号:
    2339882
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411153
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404950
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了