NSF/FDA: Towards an active surveillance framework to detect AI/ML-enabled Software as a Medical Device (SaMD) data and performance drift in clinical flow
NSF/FDA:建立主动监测框架,以检测支持 AI/ML 的软件即医疗设备 (SaMD) 数据和临床流程中的性能漂移
基本信息
- 批准号:2326034
- 负责人:
- 金额:$ 19.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The increasing use of Clinical Artificial Intelligence/Machine Learning (AI/ML)-enabled Software as a Medical Device (SaMD) for healthcare applications, including medical imaging, is posing significant challenges for regulatory bodies in ensuring that these devices are valid, robust, transparent, explainable, fair, safe, and accurate. One of the major challenges is the phenomenon of data shift, which refers to a mismatch between the distribution of the data that was used for model training/testing and the distribution of the data to which the model was applied. This makes it difficult to generalize AI/ML-enabled SaMD across different healthcare institutions, different medical devices, and disease patterns, resulting in AI model performance deterioration, erroneous outputs, and adverse patient outcomes.This grant focuses on developing novel methodologies for detecting data shifts in AI/ML-enabled SaMDs in medical cyber-physical systems for healthcare, using lung cancer nodule prediction with research and commercially available AI tools in controlled experimental settings. The project's objective is to create a framework that allows SaMDs to adapt through real-world learning, enhancing their safety and effectiveness in detecting lung cancer nodules. The innovative data shift detection algorithms will advance AI/ML-enabled medical cyber-physical systems, improving model accuracy and reliability to address real-world challenges in the adoption of medical AI/ML applications. Moreover, this grant is committed to promote diversity, equity, and inclusion in STEM fields by providing opportunities for underrepresented minority groups and female scholars-in-residence to work as research scholars at the FDA.This research is supported by the Computer and Information Science and Engineering Directorate's Division of Computer and Network Systems (CISE/CNS) under the NSF Cyber-Physical Systems (CPS) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
越来越多地将支持临床人工智能/机器学习(AI/ML)的软件作为医疗设备(SaMD)用于医疗应用,包括医疗成像,这对监管机构在确保这些设备有效、稳健、透明、可解释、公平、安全和准确方面提出了重大挑战。主要挑战之一是数据转移现象,这是指用于模型训练/测试的数据分布与应用模型的数据分布之间的不匹配。这使得在不同的医疗机构、不同的医疗设备和疾病模式中推广启用AI/ML的SAMD变得困难,导致AI模型的性能恶化、错误的输出和不利的患者结果。这笔拨款专注于开发新的方法,用于在医疗保健的医疗网络物理系统中检测启用AI/ML的SAMD的数据移动,使用肺癌结节预测与受控实验设置中的研究和商业可用的AI工具。该项目的目标是创建一个框架,使SAMD能够通过现实世界的学习来适应,增强它们在检测肺癌结节方面的安全性和有效性。创新的数据移位检测算法将推进支持AI/ML的医疗网络物理系统,提高模型的准确性和可靠性,以应对采用医疗AI/ML应用程序的现实世界挑战。此外,这笔赠款致力于促进STEM领域的多样性、公平性和包容性,为未被充分代表的少数群体和女性常驻学者提供机会,在FDA担任研究学者。这项研究由NSF网络物理系统(CPS)计划下的计算机和信息科学与工程局计算机和网络系统部门(CEISE/CNS)支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yelena Yesha其他文献
Racial and Ethnic Survival Disparities in Pediatric Oncology Over Time: An Analysis of the SEER Registry
儿科肿瘤学中种族和民族生存差异随时间的变化:对 SEER 登记处的分析
- DOI:
10.1016/j.jpedsurg.2024.161953 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:2.500
- 作者:
Nicole J. Kus;Shalini Sahoo;Theodore W. Laetsch;Gregory M. Tiao;Minerva Mayorga-Carlin;Yelena Yesha;John D. Sorkin;Brajesh K. Lal;Brian R. Englum - 通讯作者:
Brian R. Englum
Querying in Packs: Trustworthy Data Management in Ad Hoc Networks
- DOI:
10.1007/s10776-006-0040-3 - 发表时间:
2006-06-09 - 期刊:
- 影响因子:1.200
- 作者:
Anand Patwardhan;Filip Perich;Anupam Joshi;Tim Finin;Yelena Yesha - 通讯作者:
Yelena Yesha
Ability of Caprini and Padua Risk-Assessment Models to Predict Venous Thromboembolism in a Nationwide VA Study.
Caprini 和 Padua 风险评估模型在全国 VA 研究中预测静脉血栓栓塞的能力。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hilary Hayssen;Shalini Sahoo;Phuong Nguyen;Minerva Mayorga;Tariq Siddiqui;Brian Englum;J. Slejko;C. D. Mullins;Yelena Yesha;John D. Sorkin;B. Lal - 通讯作者:
B. Lal
A composite risk assessment model for venous thromboembolism
静脉血栓栓塞的综合风险评估模型
- DOI:
10.1016/j.jvsv.2024.101968 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:3.000
- 作者:
Mary Sixian Lin;Hilary Hayssen;Minerva Mayorga-Carlin;Shalini Sahoo;Tariq Siddiqui;Georges Jreij;Brian R. Englum;Phuong Nguyen;Yelena Yesha;John David Sorkin;Brajesh K. Lal - 通讯作者:
Brajesh K. Lal
Artificial Intelligence Approaches to Improving Venous Thromboembolism Risk Prediction
用于改进静脉血栓栓塞风险预测的人工智能方法
- DOI:
10.1016/j.jvsv.2024.102048 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:3.000
- 作者:
Mary Lin;Hilary Hayssen;Minerva Mayorga-Carlin;Shalini Sahoo;Tariq Siddiqui;Georges Jreij;Brian Englum;Phuong Nguyen;Yelena Yesha;John Sorkin;Brajesh Lal - 通讯作者:
Brajesh Lal
Yelena Yesha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yelena Yesha', 18)}}的其他基金
I/UCRC Phase II: Center for Hybrid Multicore Productivity Research
I/UCRC 第二阶段:混合多核生产力研究中心
- 批准号:
1439663 - 财政年份:2014
- 资助金额:
$ 19.98万 - 项目类别:
Continuing Grant
I-Corps: Exploring Commercial Feasibility of Semantically Rich Cloud Service Broker solution
I-Corps:探索语义丰富的云服务代理解决方案的商业可行性
- 批准号:
1338997 - 财政年份:2013
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
相似国自然基金
FDA上市药物库筛选鉴定靶向治疗ARID1A缺陷型结直肠癌的合成致死效应及分子机制研究
- 批准号:82373165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多维互质结构FDA雷达稀疏空时距自适应处理研究
- 批准号:61771317
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
基于FDA标记畸胎瘤细胞联合人胎盘屏障体外模型建立中药胚胎毒性评价体系的研究
- 批准号:81573740
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
NSF/FDA SiR: Pulse Oximetry Measurement Errors Correlated with Patient Skin Pigmentation: Optical Mechanisms and Effect Multipliers
NSF/FDA SiR:与患者皮肤色素沉着相关的脉搏血氧饱和度测量误差:光学机制和效应乘数
- 批准号:
2229356 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Advancing human neural progenitor cells (hNPCs) to FDA IND approval
推动人类神经祖细胞 (hNPC) 获得 FDA IND 批准
- 批准号:
10642228 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
DDT-COA-000-163 Accelerating the FDA COA Qualification Plan for the PSYCHS as a ClinRO measure
DDT-COA-000-163 作为 ClinRO 措施,加快 PSYCHS 的 FDA COA 资格计划
- 批准号:
10836892 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
A novel adult neurons screening technology to repurpose FDA-approved drugs for spinal cord injury
一种新型成人神经元筛选技术,可重新利用 FDA 批准的治疗脊髓损伤的药物
- 批准号:
10811050 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
FDA Vet-LIRN Capacity-Building of Ohio ADDL to support bacterial identification of foodborne pathogens
FDA Vet-LIRN 俄亥俄州 ADDL 能力建设支持食源性病原体的细菌鉴定
- 批准号:
10829120 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
NSF FDA/SiR: Development of eeDAP microscopy platform software, validation data, and statistical methods to assess performance of candidate Software as a Medical Device (SaMD)
NSF FDA/SiR:开发 eeDAP 显微镜平台软件、验证数据和统计方法,以评估候选软件作为医疗设备 (SaMD) 的性能
- 批准号:
2326317 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Standard Grant
Developing a novel system combining cognitive assessment with PASCALL FDA-cleared intraoperative anesthesia EEG brain monitor to prevent postoperative neurocognitive disorders in aging patients
开发一种将认知评估与 FDA 批准的 PASCALL 术中麻醉脑电图脑监测仪相结合的新型系统,以预防老年患者术后神经认知障碍
- 批准号:
10760816 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
PNA5: A Novel Mas Receptor Agonist for Treatment of Cognitive Impairment in Patients at Risk for Vascular Dementia and Alzheimer's Disease Related Dementia: an FDA required Toxicology Study
PNA5:一种新型 Mas 受体激动剂,用于治疗有血管性痴呆和阿尔茨海默氏病相关痴呆风险的患者的认知障碍:FDA 要求的毒理学研究
- 批准号:
10705874 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
FDA Vet-LIRN Capacity-Building of Ohio ADDL to support rapid testing for COVID-19
FDA Vet-LIRN 俄亥俄州 ADDL 能力建设支持快速检测 COVID-19
- 批准号:
10829119 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别:
Creation and Validation of the Dose-Opioid-Source Evaluation tool (DOSE) - a Robust Opioid Use Clinical Outcome Assessment for Qualification as an FDA Medical Device Development Tool (MDDT)
创建和验证剂量阿片类药物来源评估工具 (DOSE) - 稳健的阿片类药物使用临床结果评估,以获得 FDA 医疗器械开发工具 (MDDT) 资格
- 批准号:
10739706 - 财政年份:2023
- 资助金额:
$ 19.98万 - 项目类别: