Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow

合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模

基本信息

  • 批准号:
    2326113
  • 负责人:
  • 金额:
    $ 22.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Porous media (e.g., sponge, paper, fabrics, rock, and soil) are materials with pores distributed in a solid matrix. When pores are connected, fluids can flow through them. Understanding and predicting fluid flow in porous media is important as it occurs in a wide range of applications, from contamination of groundwater and soil to printing on paper and fabrics. By understanding flow pathways, we can make accurate predictions of the fluid flow, which in turn, will help us design and control related processes. However, predicting fluid flow in porous media is still a long-standing problem. While observing fluid flow in simple two-dimensional porous media can be straightforward, the same is not true in more realistic three-dimensional cases. This proposal aims to carry out an integrated computational and experimental study to provide a more accurate description of flow pathways and realistic fluid flow and the resultant deformations in such materials. Although non-destructive 3D imaging has provided much information about fluid distribution in porous materials, fast and cost-effective 4D pore-scale visualization (i.e., over a period of time) is still very difficult, costly and time-consuming. Furthermore, although visualization of multiphase flow in porous media has been extensively studied in 2D models, there have been very few of such studies in 4D (or even 3D). One goal of this proposal is to develop a 4D method for visualization of two-phase flow in transparent porous media and the deformation that it induces in the media beyond the realm of creeping flow, i.e. when the flow is very slow. This goal will be achieved by collecting 2D images from various angles, which will then be used with a computational algorithm to build a highly detailed 4D image of the multiphase flow. Detailed computations will be carried out in which the two-phase fluid flow and the resulting deformation will be simulated in the same porous media beyond creeping flow. The investigators will also study and identify the critical Reynolds number (Re) at which the transition from the Darcy regime to Forchheimer and eventually turbulent flows occurs. The effect of wettability on the deformation of porous media during two-phase flow will also be investigated. Distinct deformation modes of a porous medium will also be examined under a wide range of Reynolds number and wettability conditions.This project is jointly funded by the Fluid Dynamics program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多孔介质(如海绵、纸、织物、岩石和土壤)是在固体基质中分布有孔隙的材料。当毛孔相连时,流体就可以通过它们流动。了解和预测多孔介质中的流体流动非常重要,因为它存在于从地下水和土壤污染到纸张和织物印刷的广泛应用中。通过了解流动路径,我们可以对流体流动做出准确的预测,从而帮助我们设计和控制相关过程。然而,流体在多孔介质中的流动预测仍然是一个长期存在的问题。虽然在简单的二维多孔介质中观察流体流动是直截了当的,但在更现实的三维情况下,情况并非如此。本提案旨在进行综合的计算和实验研究,以提供更准确的流动路径和真实的流体流动及其在此类材料中的变形的描述。尽管非破坏性3D成像已经提供了关于多孔材料中流体分布的大量信息,但快速且经济高效的4D孔隙尺度可视化(即在一段时间内)仍然非常困难、昂贵且耗时。此外,尽管在二维模型中对多孔介质中多相流的可视化进行了广泛的研究,但在四维(甚至三维)模型中却很少有这样的研究。本提案的目标之一是开发一种4D方法,用于可视化透明多孔介质中的两相流及其在蠕变流动领域之外(即流动非常缓慢时)在介质中引起的变形。这一目标将通过从不同角度收集2D图像来实现,然后将其与计算算法一起用于构建多相流的高度详细的4D图像。详细的计算将进行,其中两相流体的流动和由此产生的变形将模拟在相同的多孔介质中超越蠕动流动。研究人员还将研究和确定临界雷诺数(Re),在这个雷诺数上,从达西状态过渡到福希海默状态,并最终发生湍流。研究了两相流动中润湿性对多孔介质变形的影响。多孔介质的不同变形模式也将在广泛的雷诺数和润湿性条件下进行研究。该项目由流体动力学项目和促进竞争研究的既定项目(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pejman Tahmasebi其他文献

Application of a Modular Feedforward Neural Network for Grade Estimation
  • DOI:
    10.1007/s11053-011-9135-3
  • 发表时间:
    2011-01-21
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Pejman Tahmasebi;Ardeshir Hezarkhani
  • 通讯作者:
    Ardeshir Hezarkhani
Dependence of electrical conduction on pore structure in reservoir rocks from Beibuwan and Pearl River Mouth Basins: A theoretical and experimental study
  • DOI:
    10.1190/geo2021-0682.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Xiaojun Chen;Luong Duy Thanh;Chengfei Luo;Pejman Tahmasebi;Jianchao Cai
  • 通讯作者:
    Jianchao Cai
A Multiscale Approach for Geologically and Flow Consistent Modeling
  • DOI:
    10.1007/s11242-018-1062-x
  • 发表时间:
    2018-04-17
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Pejman Tahmasebi;Serveh Kamrava
  • 通讯作者:
    Serveh Kamrava
Numerical framework for coupling SPH with image-based DEM for irregular particles
用于不规则粒子的光滑粒子流体动力学(SPH)与基于图像的离散元法(DEM)耦合的数值框架
  • DOI:
    10.1016/j.compgeo.2024.106751
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Mehryar Amir Hosseini;Pejman Tahmasebi
  • 通讯作者:
    Pejman Tahmasebi
Editorial to the Special Issue on Reconstruction of Porous Media and Materials and Its Applications
  • DOI:
    10.1007/s11242-018-1131-1
  • 发表时间:
    2018-08-10
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Pejman Tahmasebi;Muhammad Sahimi
  • 通讯作者:
    Muhammad Sahimi

Pejman Tahmasebi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pejman Tahmasebi', 18)}}的其他基金

Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302764
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
  • 批准号:
    2000966
  • 财政年份:
    2020
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402728
  • 财政年份:
    2024
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2246916
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
  • 批准号:
    2215646
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
  • 批准号:
    2215082
  • 财政年份:
    2022
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2103434
  • 财政年份:
    2021
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Capturing 4D Variations in Stress, Slip, and Fault-Zone Material Properties: The 2019-2021 Gofar Transform Fault Earthquake Prediction Experiment
合作研究:捕捉应力、滑移和断层带材料特性的 4D 变化:2019-2021 年 Gofar 变换断层地震预测实验
  • 批准号:
    2128784
  • 财政年份:
    2021
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
  • 批准号:
    2103560
  • 财政年份:
    2021
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
  • 批准号:
    2000968
  • 财政年份:
    2020
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了