Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors

协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统

基本信息

  • 批准号:
    2326391
  • 负责人:
  • 金额:
    $ 17.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2027-10-31
  • 项目状态:
    未结题

项目摘要

As the largest hospital workforce, registered nurses are essential to the overall stability of hospitals and play a vital role in delivering quality patient care. Nursing instructors are responsible for training and assessments of this workforce. The U.S. is experiencing a dire shortage of nurses, leading to significant turnover of nursing staff and an ever-growing need to train more nurses. As a result, the supply for nursing instructors too has outstripped demand. Meeting the nurse workforce training needs is a significant challenge and motivates development of transformative mechanisms for human-technology partnership in nurse workforce training. To address this challenge, the project's overall goal is to help nurse instructors improve training outcomes while freeing up their time for personalized instruction and enhance efficiency of nursing workforce training programs. To achieve this goal the project will design, develop, and evaluate the impacts of Robotic Intelligent Teaching Assistant Systems (RITAS) on the future of nurse workforce training. Through a symbiosis of virtual and embodied intelligence components, the teaching assistance system will assist nursing instructors in training of routine nursing procedures by assessing trainees' skills, reporting the assessment summaries to instructors, and delivering instructor-guided tutoring to trainees. Through mechanisms for participatory design, nursing instructors and nurses of varying backgrounds will be involved in the technology design from the very beginning, shaping the use of such tools and informing future efforts on the use of artificial intelligence and robotics in nursing curriculum and more broadly healthcare. The core team brings together expertise in nursing, nursing education, behavioral science, robotics, artificial intelligence, intelligent tutoring, and human-centered computing to achieve the overarching goals. Project advisors will contribute technology, nursing, organizational behavior and management, and learning sciences expertise. The project includes three concurrent and integrated tracks to realize novel mechanisms for human-technology partnership in nurse workforce training. The first two tracks focus on design and development of the virtual and embodied components of the future technology, respectively, through algorithmic innovations in intelligent tutoring and robotics. Through these innovations, the project will bring a transformative leap in intelligent tutoring robots: instead of relying solely on conversational interaction, RITAS will utilize its sensors and embodiment to verify and improve trainees' physical skill execution. Together, the two components will assist with assessment and training of nursing procedures. Assessment summaries and tutoring will be delivered using both verbal and non-verbal mechanisms for human-robot communication. The third track will measure training, productivity, and behavioral metrics that are relevant to deployment and adoption of the future technology, such as the impact of robotic teaching assistance on nursing instructors' workload and nurse trainees' learning outcomes. These measurements will be derived through extensive human subject experiments conducted within ongoing nurse workforce training activities at a large hospital, which onboards over thousand nurses per year, and distilled into a concise nursing theory guiding technology adoption in nursing education. The project will also develop spatially-grounded models of nursing procedures and training environments. Through these worker-centered assessments, theories, and models, the project will inform the work design of future nursing instructors at the human-technology frontier.This project is supported by the Future of Work at the Human-Technology Frontier program which supports multi-disciplinary research to sustain economic competitiveness, promote worker well-being, lifelong and pervasive learning, and quality of life, and illuminate the emerging social and economic context and drivers of innovations that are shaping the future of jobs and work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为最大的医院劳动力,注册护士对医院的整体稳定至关重要,并在提供优质的病人护理方面发挥着至关重要的作用。护理指导员负责培训和评估这支队伍。美国正经历着护士的严重短缺,导致护理人员的大量流动,以及对培训更多护士的需求不断增长。因此,护理教师的供应也超过了需求。满足护士劳动力培训需求是一个重大挑战,并激励发展变革机制的人力技术合作伙伴关系,在护士劳动力培训。为了应对这一挑战,该项目的总体目标是帮助护士教师提高培训效果,同时腾出时间进行个性化指导,提高护理人员培训计划的效率。为了实现这一目标,该项目将设计,开发和评估机器人智能教学辅助系统(RITAS)对护士劳动力培训未来的影响。通过虚拟和实体智能组件的共生,教学辅助系统将通过评估学员的技能,向教师报告评估摘要,并向学员提供教师指导的辅导,来帮助护理教师进行常规护理程序的培训。通过参与式设计机制,不同背景的护理教师和护士将从一开始就参与技术设计,塑造这些工具的使用,并为未来在护理课程和更广泛的医疗保健中使用人工智能和机器人技术提供信息。核心团队汇集了护理,护理教育,行为科学,机器人,人工智能,智能辅导和以人为本的计算方面的专业知识,以实现总体目标。项目顾问将贡献技术,护理,组织行为和管理,以及学习科学的专业知识。该项目包括三个并行和集成的轨道,以实现新的机制,在护士劳动力培训的人与技术的伙伴关系。前两个轨道分别侧重于通过智能辅导和机器人技术的算法创新来设计和开发未来技术的虚拟和体现组件。通过这些创新,该项目将为智能辅导机器人带来变革性的飞跃:RITAS将利用其传感器和化身来验证和提高学员的身体技能执行力,而不是仅仅依赖于对话式互动。这两个组成部分将共同协助评估和培训护理程序。评估总结和辅导将使用语言和非语言机制进行人机交流。第三个轨道将衡量与部署和采用未来技术相关的培训,生产力和行为指标,例如机器人教学辅助对护理教师工作量和护士学员学习成果的影响。这些测量结果将通过在一家大型医院正在进行的护士队伍培训活动中进行的广泛的人类受试者实验得出,该医院每年有数千名护士参加,并提炼成一个简明的护理理论,指导护理教育中的技术采用。该项目还将开发护理程序和培训环境的空间接地模型。通过这些以工人为中心的评估、理论和模型,该项目将为未来护理指导员在人类技术前沿的工作设计提供信息。该项目得到了人类技术前沿工作未来计划的支持,该计划支持多学科研究,以维持经济竞争力,促进工人福祉,终身和普及学习以及生活质量,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shannan Hamlin其他文献

Shannan Hamlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shannan Hamlin', 18)}}的其他基金

Collaborative Research: FW-HTF-R: The Future of Robot-Assisted Nursing: Interactive AI Frameworks for Upskilling Nurses and Customizing Robot Assistance
合作研究:FW-HTF-R:机器人辅助护理的未来:用于提高护士技能和定制机器人辅助的交互式人工智能框架
  • 批准号:
    2222417
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326408
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
  • 批准号:
    2401745
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326169
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326186
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了