RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
基本信息
- 批准号:2327379
- 负责人:
- 金额:$ 25.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant professor and training for a graduate student at Iowa State University. This work would be conducted in collaboration with researchers at the NASA Ames Research Center. For planetary exploration, spacecraft must pass through atmospheric entry and powered descent stages to safely decelerate and accurately land. Dating back to the Apollo mission era, Atmospheric Entry Guidance (AEG) controls the atmospheric drag of a spacecraft to achieve these objectives. Researchers have been working on optimal AEG to maximize fuel savings during the subsequent powered descent by terminating the entry phase with a minimum velocity trajectory. These optimal AEG methods have relied on ideal dynamic models with uncertain differences from the actual entry environment. Therefore, more advanced and complex computational modeling and simulation technologies have been developed and utilized to minimize these discrepancies. Despite the advantages of Monte Carlo simulation, the increased complexity makes it an impractical method to quantify modeling uncertainty. In addition, the entry vehicle's onboard computer is not powerful enough to run optimal AEG with a complex model. To address these limitations, this research aims to create a surrogate-based optimal guidance system, trained on high-fidelity data from complex simulations. The proposed guidance method enhances safety and efficiency in space exploration by reducing computational burden, saving spacecraft fuel, and enabling modeling uncertainty quantification.The need for a new optimal AEG that reduces computational costs and enables modeling uncertainty quantification is evident. To satisfy this need, a surrogate-based AEG system, trained using high-fidelity simulation data from advanced Entry System Modeling (ESM), will be developed. For the development, preparing precise and computationally efficient training data that effectively encapsulates the core of atmospheric entry is crucial. The proposed research will identify the dominant variables influencing AEG performance and generate the required training data using NASA's entry simulation tool. Various surrogate models for training, such as Gaussian Process Regression and Generalized Additive Model, will also be explored. The ultimate objective is establishing an onboard optimal AEG framework using a trained surrogate. This framework can incorporate various feedback control algorithms to aid in planetary entry missions on Earth, Mars, Venus, and Titan. While prior research has focused on applying surrogates for subcomponent modeling, such as air density and fluid and aerothermal dynamics, this approach targets application to optimal guidance and will accelerate calculation speed for implementation on embedded platforms. To reduce computations and training time, this research proposes a simplification method for the entry guidance profile that can also reduce the dimension of the training data. The success of this project will pave the way for extending the proposed surrogate-based technique to other space applications, such as spacecraft orbit or attitude guidance, and contribute significantly to extending the traditional space Guidance, Navigation, and Control (GNC) approach to data-based learning techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究基础设施改善轨道-4 EPSCoR研究员(RII轨道-4)项目将提供奖学金,以助理教授和培训研究生在爱荷华州州立大学。这项工作将与美国宇航局艾姆斯研究中心的研究人员合作进行。对于行星探索,航天器必须通过大气层进入和动力下降阶段,以安全减速和准确着陆。追溯到阿波罗使命时代,大气层进入制导(AEG)控制航天器的大气阻力来实现这些目标。研究人员一直在研究最佳AEG,以最小速度轨迹终止进入阶段,从而在随后的动力下降过程中最大限度地节省燃料。这些最佳AEG方法依赖于理想的动态模型,与实际进入环境存在不确定性差异。因此,更先进和复杂的计算建模和仿真技术已经被开发和利用,以尽量减少这些差异。尽管蒙特卡罗模拟的优点,增加的复杂性,使其成为一个不切实际的方法来量化建模的不确定性。此外,入门车辆的车载计算机功能不够强大,无法在复杂模型下运行最佳AEG。为了解决这些局限性,本研究旨在创建一个基于代理的最佳制导系统,该系统在复杂模拟的高保真数据上进行训练。所提出的制导方法通过减少计算负担、节省航天器燃料和实现建模不确定性量化来提高空间探索的安全性和效率。显然,需要一种新的最优AEG来减少计算成本和实现建模不确定性量化。为了满足这一需求,将开发一个基于代理的AEG系统,该系统使用来自高级进入系统建模(ESM)的高保真仿真数据进行训练。为了开发,准备精确和计算效率高的训练数据,有效地封装大气层进入的核心是至关重要的。拟议的研究将确定影响AEG性能的主要变量,并使用NASA的进入模拟工具生成所需的训练数据。还将探索各种用于训练的替代模型,例如高斯过程回归和广义加性模型。最终的目标是建立一个板载的最佳AEG框架使用训练有素的代理。该框架可以结合各种反馈控制算法,以帮助地球,火星,金星和泰坦上的行星进入任务。虽然以前的研究集中在应用子组件建模的代理,如空气密度和流体和空气动力学,这种方法的目标应用程序的最佳指导,并将加快在嵌入式平台上实施的计算速度。为了减少计算量和训练时间,本研究提出了一种简化方法的入口引导轮廓,也可以减少训练数据的维数。该项目的成功将为将拟议的基于代理的技术扩展到其他空间应用铺平道路,例如航天器轨道或姿态制导,并大大有助于扩展传统的空间制导、导航、GNC(全球导航卫星系统)数据处理方法-该奖项反映了NSF的法定使命,并被认为是值得通过评估使用基金会的知识优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dae Young Lee其他文献
Exploring Li-COsub2/sub batteries with electrospun PAN-derived carbon nanofibers and Lisub1.4/subAlsub0.4/subTisub1.6/sub(POsub4/sub)sub3/sub solid-state electrolyte
探索具有电纺聚酰胺腈(PAN)衍生碳纳米纤维和 Li₁.₄Al₀.₄Ti₁.₆(PO₄)₃固态电解质的锂二氧化碳(Li-CO₂)电池
- DOI:
10.1016/j.jallcom.2023.172559 - 发表时间:
2024-01-05 - 期刊:
- 影响因子:6.300
- 作者:
Dan Na;Roopa Kishore Kampara;Dohyeon Yu;Baeksang Yoon;Dae Young Lee;Inseok Seo - 通讯作者:
Inseok Seo
A fault isolation filter design using left eigenstructure assignment scheme
- DOI:
10.1007/bf03184434 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:1.700
- 作者:
Jae Weon Choi;Shi Bok Lee;Dae Young Lee;Un Sik Park;Young Soo Suh - 通讯作者:
Young Soo Suh
Wireless wafer-level testing of integrated circuits via capacitively-coupled channels
通过电容耦合通道对集成电路进行无线晶圆级测试
- DOI:
10.1109/ddecs.2011.5783056 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Dae Young Lee;D. Wentzloff;J. Hayes - 通讯作者:
J. Hayes
Gender differences and dose proportionality in the toxicokinetics of udenafil and its active metabolite following oral administration in rodents
- DOI:
10.1016/j.taap.2020.115339 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Jong-Hwa Lee;Dae Young Lee;Kyung Koo Kang;Eun Ju Jeong;Christine E. Staatz;In-hwan Baek - 通讯作者:
In-hwan Baek
Jerusalem artichoke extracts regulate the gene expression of key enzymes involved in fatty acid biosynthesis
菊芋提取物调节涉及脂肪酸生物合成的关键酶的基因表达
- DOI:
10.1016/j.jafr.2025.101819 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.200
- 作者:
Soo Jin Lee;Woo-Cheol Shin;Sangmin Ju;Mi-Ri Gwon;Jae-Hwa Lee;Young-Ran Yoon;Stuart K. Calderwood;Dae Young Lee;Heeyoun Bunch - 通讯作者:
Heeyoun Bunch
Dae Young Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant