RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems
RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模
基本信息
- 批准号:2327409
- 负责人:
- 金额:$ 27.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent reports of lithium-ion (Li-ion) battery overheating and catching fire in electric vehicles (EVs) have raised concerns about user safety and the broader acceptance of EVs. These incidents highlight the limitations of the onboard electronic system that monitors and controls the battery pack, referred to as the battery management system (BMS), in detecting such abnormal behavior. Therefore, enhancing the BMS's capabilities to discern the battery's behavior becomes imperative to prevent catastrophic failures. A smart BMS capable of monitoring the smallest part of a battery pack in real-time and learning abnormal behavior for future prediction could be the key to addressing these safety concerns. Through this NSF EPSCoR RII Track-4 fellowship project, the PI will collaborate with experts at the Sandia National Laboratory (SNL) to develop a transformative solution for capturing and learning the dynamic behavior of Li-ion battery packs in EVs. This innovative approach promises to enhance the BMS's predictive capabilities and drive health-centric decisions. Additionally, this initiative includes a comprehensive educational and outreach segment, aimed at promoting the participation of underrepresented students in research, integrating research findings into both graduate and undergraduate education, and facilitating K-12 outreach on Li-ion battery operation and safety through online video tutorials.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows project will provide a fellowship to an Assistant Professor and training for a graduate student at the University of Alabama Huntsville. This work would be conducted in collaboration with researchers at the Sandia National Laboratory (SNL). The primary goals of the fellowship project are to develop: 1) an interconnected model of a Li-ion battery pack and 2) a deep neural network model to learn the spatial and temporal dynamics. The project's intrinsic scientific merit revolves around comprehending the interplay between the electrical, thermal, and aging behavior of the Li-ion battery pack and how these intricately linked behaviors influence internal degradation propagation among cells, both spatially and temporally. Leveraging these insights, the project will, in Aim 1, conceive an interconnected electro-thermal-aging model for the battery pack. A data-centric identification strategy will also be delineated to estimate the parameters of the interconnected model, drawing on graph theory and network inference. In Aim 2, a deep diffusion convolutional neural network (DD-CRNN) will be designed to learn the spatiotemporal dynamics of the pack. This physics-driven DD-CRNN model will be trained using a blend of experimental and synthetic data. Relying on SNL's expansive pack-level testing infrastructure, the project will accumulate degradation and abuse data, which is essential for training the DD-CRNN and affirming the model's validity. The proposed model and learning framework are poised to transform battery health monitoring by delivering precise State of Charge (SOC), State of Health (SOH), and thermal parameter estimations. This innovation will empower BMS with greater autonomy in decision-making by facilitating cell- and module-level health and anomaly detection. The project will chart a new frontier in power and energy management and critically minimize the risk of pack overheating and fire incidents, ensuring safer and more efficient battery utilization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近关于电动汽车(EV)中锂离子(Li离子)电池过热和着火的报道引起了人们对用户安全和EV更广泛接受的担忧。这些事故突出了监测和控制电池组的车载电子系统(称为电池管理系统(BMS))在检测这种异常行为方面的局限性。因此,增强BMS识别电池行为的能力对于防止灾难性故障变得至关重要。智能BMS能够实时监控电池组的最小部分,并学习异常行为以进行未来预测,这可能是解决这些安全问题的关键。通过这个NSF EPSCoR RII Track-4奖学金项目,PI将与桑迪亚国家实验室(SNL)的专家合作,开发一种变革性的解决方案,用于捕获和学习电动汽车中锂离子电池组的动态行为。这种创新方法有望增强BMS的预测能力,并推动以健康为中心的决策。此外,这一举措包括一个全面的教育和外联部分,旨在促进代表性不足的学生参与研究,将研究成果纳入研究生和本科生教育,并通过在线视频教程促进K-12在锂离子电池操作和安全方面的推广。这一研究基础设施改善轨道-4个EPSCoR研究员项目将为亚拉巴马亨茨维尔大学的一名助理教授提供研究金,并为一名研究生提供培训。这项工作将与桑迪亚国家实验室(SNL)的研究人员合作进行。该奖学金项目的主要目标是开发:1)锂离子电池组的互连模型和2)用于学习空间和时间动态的深度神经网络模型。该项目的内在科学价值围绕着理解锂离子电池组的电、热和老化行为之间的相互作用,以及这些错综复杂的行为如何在空间和时间上影响电池之间的内部退化传播。利用这些见解,该项目将在目标1中为电池组构思一个互连的电热老化模型。还将描绘一个以数据为中心的识别策略,以估计互连模型的参数,利用图论和网络推理。在目标2中,将设计一个深度扩散卷积神经网络(DD-CRNN)来学习包的时空动态。这个物理驱动的DD-CRNN模型将使用实验和合成数据的混合进行训练。依靠SNL广泛的包级测试基础设施,该项目将积累退化和滥用数据,这对于训练DD-CRNN和确认模型的有效性至关重要。所提出的模型和学习框架有望通过提供精确的荷电状态(SOC)、健康状态(SOH)和热参数估计来改变电池健康监测。这一创新将通过促进单元和模块级的健康和异常检测,使BMS在决策方面具有更大的自主权。该项目将在电力和能源管理领域开辟新的前沿,并将电池组过热和火灾事故的风险降至最低,确保更安全、更高效地利用电池。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avimanyu Sahoo其他文献
On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm
多目标进化算法中Pareto前沿和维数相似度的估计
- DOI:
10.1016/j.ins.2021.03.008 - 发表时间:
2021-03 - 期刊:
- 影响因子:8.1
- 作者:
Li Li;Gary G Yen;Avimanyu Sahoo;Liang Chang;Tianlong Gu - 通讯作者:
Tianlong Gu
Unsupervised Representation Learning to Aid Semi-Supervised Meta Learning
无监督表示学习辅助半监督元学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Atik Faysal;Mohammad Rostami;Huaxia Wang;Avimanyu Sahoo;Ryan Antle - 通讯作者:
Ryan Antle
Meta-Tasks: An alternative view on Meta-Learning Regularization
元任务:元学习正则化的另一种观点
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mohammad Rostami;Atik Faysal;Huaxia Wang;Avimanyu Sahoo;Ryan Antle - 通讯作者:
Ryan Antle
Avimanyu Sahoo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avimanyu Sahoo', 18)}}的其他基金
Collaborative Research: REU site: Multi-disciplinary Research Experiences in Smart Personal Protective Equipment (SmaPP)
合作研究:REU 网站:智能个人防护装备 (SmaPP) 的多学科研究经验
- 批准号:
2244294 - 财政年份:2023
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant