RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
基本信息
- 批准号:2327474
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electric vehicles (EVs) offer a crucial pathway to reduce carbon emissions in the transportation sector and mitigate global climate change. The traction inverter powers the vehicle’s movement and is considered the “heart” of an EV’s powertrain. A smaller, lighter, and more efficient traction inverter saves energy and extends the driving range of EVs. Additionally, high-temperature capability is essential to ensure reliable EV operation across a wider range of temperatures without damage or failure, reducing the need for bulky cooling systems. The aim of this project is to enhance the power density and operating temperature range of traction inverters by utilizing gallium oxide packaged power modules. Gallium oxide, an emerging ultra-wide bandgap semiconductor, has the potential to revolutionize power electronics with higher efficiency and superior operational temperatures due to its exceptional material properties. By eliminating technical barriers to gallium oxide device integration, this project will foster the development of the next generation of high-density, high-temperature power converters and promote the use of gallium oxide technology in automotive and other harsh environment applications. The fellowship will strengthen the PI’s multi-disciplinary research capabilities in semiconductor devices, multiphysics analysis, power module packaging, and high-performance power electronics. It will also provide hands-on laboratory experience to educate and train the next generation of electrical engineers in the field of wide and ultra-wide bandgap semiconductor devices, power electronics packaging, and conversion.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant professor and training for a graduate student at the University of Arkansas. This work would be conducted in collaboration with researchers at the National Renewable Energy Laboratory. High-density, lightweight power electronics converters, especially those capable of operation at high ambient temperatures, are compellingly needed for automotive, aerospace, and space exploration applications. Gallium oxide emerges as a promising ultra-wide bandgap semiconductor material with a larger bandgap energy compared to conventional silicon and wide bandgap semiconductors. This advantageous characteristic enables high breakdown electrical strength, low intrinsic carrier concentration, and corresponding high operating temperatures, making it an ideal candidate for high-temperature, high-density power electronics. However, the low thermal conductivity of gallium oxide impedes efficient heat dissipation from the device junction, increasing thermal resistances in conventional packaging designs. In collaboration with researchers at the National Renewable Energy Laboratory, the PI will overcome these challenges associated with gallium oxide power module packaging and advance its application in high-power density and high-temperature power electronics converters. This project has three research objectives: (1) Innovate power module packaging techniques that optimize thermal resistances, minimize parasitic inductances, and enhance high-temperature operation capability; (2) Explore reliable gallium oxide power device gate driving and protection strategies to maximize device potential and increase reliability; and (3) Demonstrate a gallium oxide-based high-density and high-temperature traction inverter to validate and expedite the adoption of gallium oxide technology. The success of the project promises empirical insights into gallium oxide device modeling, packaging, gate driving, protection, and its application in power converters. Consequently, it will catalyze advancements in transport electrification and the deployment of gallium oxide technology within challenging environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电动汽车(EV)提供了减少运输部门碳排放并减轻全球气候变化的关键途径。牵引力逆变器为车辆的移动提供动力,被认为是电动汽车动力总成的“心脏”。一个较小,更轻,更高效的牵引逆变器可节省能量并扩展电动汽车的驾驶范围。此外,高温能力对于确保在不损坏或失败的各种温度上可靠的EV操作至关重要,从而减少了对笨重的冷却系统的需求。该项目的目的是通过利用氧化甲壳包装的功率模块来增强牵引逆变器的功率密度和工作温度范围。氧化甲壳虫是一种新兴的超宽带隙半导体,由于其出色的材料特性,具有较高效率和较高运行温度的电力电子的潜力。通过消除氧化韧带集成的技术障碍,该项目将促进下一代高密度,高温功率转换器的发展,并促进在汽车和其他HARMSH环境应用中使用氧化甲壳虫技术。奖学金将增强PI在半导体设备,多物理分析,功率模块包装和高性能电力电子方面的多学科研究能力。它还将提供动手实验室的经验,以教育和培训宽阔和超宽的带隙半导体设备,电力电子包装和转换领域的下一代电气工程师。本研究基础结构改进Track-4 EPSCOR研究Fellows(RII Track-4)项目将为助理专业的学生和助理学生培训,并将为助理学生提供服务。这项工作将与国家可再生能源实验室的研究人员合作进行。高密度,轻质电力电子转换器,尤其是能够在高环境温度下运行的转换器,对于汽车,航空航天和空间勘探应用来说是迫切需要的。与常规的硅和宽带隙半导体相比,氧化甘油含有更大的带隙能的超宽带隙半导体材料出现。该优势的特征使高击穿电强度,低固有载体浓度和相应的高工作温度使其成为高温高密度电力电子设备的理想候选者。然而,氧化韧带的低导热系数阻碍了设备连接的有效散热,从而增加了传统包装设计中的热电阻。与国家可再生能源实验室的研究人员合作,PI将克服这些挑战与氧化韧带电源模块包装相关的挑战,并提高其在高功率密度和高温电力电子转换器中的应用。该项目具有三个研究目标:(1)创新的功率模块包装技术,可优化热阻力,最大程度地减少寄生电感并增强高温操作能力; (2)探索可靠的氧化甲壳机电源门栅极驱动和保护策略,以最大程度地发挥设备潜力并提高可靠性; (3)展示了一种基于氧化韧带的高密度和高温牵引逆变器,以验证和加快采用氧化;该项目的成功承诺对氧化甲壳机建模,包装,门驾驶,保护及其在功率转换器中的应用进行经验见解。因此,它将促进运输电气化的进步和在挑战环境中的氧化耐加速技术的部署。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估我们被认为是诚实的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoqing Song其他文献
Prognosis and predictive factors of partial seizures in children.
儿童部分性发作的预后和预测因素。
- DOI:
10.1016/j.pediatrneurol.2007.03.005 - 发表时间:
2007 - 期刊:
- 影响因子:3.8
- 作者:
Zhiping Wang;Lei Qi;Xiaoqing Song - 通讯作者:
Xiaoqing Song
Excess carrier mapping technique — A new parameter extraction method for 4H-SiC ambipolar power devices
过剩载流子映射技术——一种新的4H-SiC双极功率器件参数提取方法
- DOI:
10.1109/wipda.2015.7369286 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Meng;Xiaoqing Song;A. Huang - 通讯作者:
A. Huang
Medium Voltage Single-Stage Dual Active Bridge Based Solid State Transformer (DABSST)
基于中压单级双有源桥的固态变压器 (DABSST)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Soumik Sen;Liqi Zhang;Xin Zhao;Yang Lei;A. Huang;Qianlai Zhu;Xiaoqing Song - 通讯作者:
Xiaoqing Song
People's attitudes toward others' positive self-presentations and demotivation self-presentations on SNS
- DOI:
10.1016/j.actpsy.2024.104160 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:
- 作者:
Jing Bai;Xiaoqing Song;Jingjing Song - 通讯作者:
Jingjing Song
Hierarchical protection architecture for 380V DC data center application
380V直流数据中心应用的分级保护架构
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kai Tan;Xiaoqing Song;Chang Peng;Pengkun Liu;A. Huang - 通讯作者:
A. Huang
Xiaoqing Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
石羊河上游径流水源追踪量化的模拟研究
- 批准号:42301153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
- 批准号:62306029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
- 批准号:42304051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
- 批准号:62302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant