Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
基本信息
- 批准号:2327572
- 负责人:
- 金额:$ 14.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Fluids under supercritical (SC) conditions, where distinct liquid and gas phases no longer exist, are found in nature and technological systems that can take advantage of the extreme changes that take place near the critical temperature and pressure. The increases in heat transfer, reductions in fluid friction, and high solubility of SC fluids have current and potential applications in pipeline transport of natural gas, delivery of carbon dioxide as part of carbon capture and storage processes, working fluids for thermal and nuclear power plants, solar and geothermal energy conversion systems, and enhanced cooling of electronic devices and data centers. Despite the advantages offered by the unique properties of SC fluids, their wide-spread use has been curtailed because of inadequate understanding of anomalous behaviors, characterized by large-scale variations in thermophysical properties in the critical region, resulting in thermal and flow oscillations and other detrimental phenomena. Additionally, the critical temperature and pressure range, specific to each substance, may not fit a particular technological need. This research will address the anomalous behavior knowledge gaps of an important set of SC fluids, which will open the door to new technologies for high-capacity, energy-efficient, and environmentally responsible fluid flow and thermal management systems. For example, natural gas under SC conditions (SNG) can be transported via overland, underground, and undersea pipelines for distances greater than 2,000 km. SNG transport is power-efficient and can reduce the number of enroute recompression stations or eliminate them altogether, enabling new trans-oceanic routes that are currently impossible, serving the US national interest as well as providing energy security elsewhere in the world. In comparison with liquified natural gas (LNG), SNG transport can be less expensive, have reduced environmental impact, and be more secure and safe. Knowledge generated in the study of SNG transport will be useful in determining the thermodynamic states of carbon dioxide when it is transported from shorelines to the ocean floor for sequestration. Likewise, development of methods to transport SC oxygen, nitrogen, and other important industrial/medical gases will benefit from this work. The broader impacts of this research include educational opportunities in SC transport phenomena and outreach to underrepresented groups using the wide range of current and potential SC technologies to motivate interest in thermodynamics.Previous research has shown that anomalous fluid transport behavior near the critical point starts in the subcritical state above the triple point and continues deep into the SC state. In this research program, a thermodynamic model based on Gibbs free energy will be developed to delineate the temperature-pressure boundaries of the anomalous states and characterize the higher-order phase transitions. It will be applied to a set of naturally/industrially important SC fluids including water, carbon dioxide, methane, argon, and nitrogen. This analysis will lead to the identification of safe conditions at which SC fluids, including supercritical natural gas (SNG), can be transported over long distances without recompression. The full potential for SNG transport will be quantified by developing a one-dimensional computational model for SC thermal transport, accounting for transport property variations and compressibility, environmental thermal conditions, Joule-Thomson phenomena, and thermal resistance of the pipeline. A three-dimensional model will be developed to examine the flow and thermal behavior in the inlet and outlet regions as well as the impact of temperature variations in the surrounding environment. The thermodynamic models also will be employed to design customized mixtures of SC fluids for effective thermal management. The proposed research includes plans to fabricate an experimental apparatus for SC fluid flow and thermal analysis to generate data relevant to SC fluid properties, examine parametric effects for model validation, and explore methods to enhance heat transfer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超临界(SC)条件下的流体,即不再存在不同的液体和气相,在自然界和技术系统中都可以找到,这些系统可以利用在临界温度和压力附近发生的极端变化。SC流体的传热增加、流体摩擦减少和高溶解度在天然气管道运输、作为碳捕获和储存过程一部分的二氧化碳输送、热电厂和核电站的工质、太阳能和地热能转换系统以及电子设备和数据中心的强化冷却方面具有当前和潜在的应用。尽管超临界流体具有独特的性质所带来的优势,但由于对其异常行为的认识不足,限制了其广泛应用,其特征是临界区域内热物性的大范围变化,导致热和流动振荡等有害现象。此外,特定于每种物质的临界温度和压力范围可能不适合特定的技术需求。这项研究将解决一组重要的SC流体的异常行为知识空白,这将为高容量、高能效和对环境负责的流体流动和热管理系统打开新技术的大门。例如,SC条件下的天然气(SNG)可以通过陆上、地下和海底管道运输,距离超过2,000公里。SNG运输是高能效的,可以减少或完全取消途中再压缩站的数量,实现目前不可能的新的跨洋航线,服务于美国的国家利益,并为世界其他地方提供能源安全。与液化天然气(LNG)相比,SNG运输成本更低,对环境的影响更小,更安全。研究近海气体输送所产生的知识将有助于确定二氧化碳从海岸线输送到海底进行封存时的热力学状态。同样,输送SC氧气、氮气和其他重要工业/医疗气体的方法的开发也将从这项工作中受益。这项研究的更广泛影响包括在SC传输现象方面的教育机会,以及使用广泛的当前和潜在的SC技术来激发对热力学的兴趣的未被充分代表的群体。先前的研究表明,临界点附近的异常流体传输行为始于三相点以上的亚临界状态,并持续到SC状态的深处。在这个研究计划中,将建立一个基于吉布斯自由能的热力学模型来描述反常状态的温度-压力边界,并表征高阶相变。它将应用于一系列自然/工业上重要的SC流体,包括水、二氧化碳、甲烷、Ar和氮气。这一分析将导致确定SC流体,包括超临界天然气(SNG),可以在不再压缩的情况下长距离运输的安全条件。SNG输送的全部潜力将通过建立SC热输送的一维计算模型来量化,该模型考虑了输送性质的变化和可压缩性、环境热条件、焦耳-汤姆逊现象以及管道的热阻。将开发一个三维模型,以研究进出口区域的流动和热行为,以及周围环境温度变化的影响。热力学模型还将用于设计定制的SC流体混合物,以实现有效的热管理。拟议的研究包括计划制造一种用于SC流体流动和热分析的实验设备,以生成与SC流体属性相关的数据,检查模型验证的参数效应,并探索增强热传递的方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guo-Xiang Wang其他文献
Controlling/living polymerization of MMA with RGO/BiVO4 as photoinitiator
RGO/BiVO4 光引发剂 MMA 的控制/活性聚合
- DOI:
10.1080/10601325.2017.1317209 - 发表时间:
2017-08 - 期刊:
- 影响因子:0
- 作者:
Min-Jie Zhou;Mang Lu;Guo-Xiang Wang;Li-Chao Liu;HuWu;Wen-Yuan Xu - 通讯作者:
Wen-Yuan Xu
Trehalose ameliorates autophagy dysregulation in aged cortex and acts as an exercise mimetic to delay brain aging in elderly mice
海藻糖可改善衰老皮质中的自噬失调,并作为运动模拟来延缓老年小鼠的大脑衰老
- DOI:
- 发表时间:
- 期刊:
- 影响因子:7
- 作者:
Shan-Yao Pan;Shan-Shan Guo;Jia-Ru Dai;Yan-Rong Gu;Guo-Xiang Wang;Yu-Long Wang;Zheng-Hong Qin;Li Luo - 通讯作者:
Li Luo
Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens
挥发性制冷剂脉冲喷雾冷却的喷雾特性和传热动力学对比研究
- DOI:
10.1016/j.expthermflusci.2016.11.016 - 发表时间:
2017-04 - 期刊:
- 影响因子:3.2
- 作者:
Zhi-Fu Zhou;Bin Chen;Rui Wang;Guo-Xiang Wang - 通讯作者:
Guo-Xiang Wang
Thermal Entanglement in Lipkin–Meshkov–Glick Model
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:
- 作者:
Long Du;Wen-Xin Zhang;Jia-Yan Ding;Guo-Xiang Wang;Jing-Min Hou; - 通讯作者:
Thermal Entanglement in LipkinMeshkovGlick Model
Lipkin 中的热纠缠
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3.1
- 作者:
Long Du;Wen-Xin Zhang;Jia-Yan Ding;Guo-Xiang Wang;Jing-Min Hou - 通讯作者:
Jing-Min Hou
Guo-Xiang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guo-Xiang Wang', 18)}}的其他基金
Nanoscale Exploratory Research: Dispersion of Nanopowders in Solidifying Molten Metals and Formation of High-Strength Nano-Composite Solders
纳米探索性研究:纳米粉末在凝固熔融金属中的分散和高强度纳米复合焊料的形成
- 批准号:
0103159 - 财政年份:2001
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327571 - 财政年份:2023
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Collaborative Research: Applying Ion-Exchange Chromatography-Supercritical Fluid Chromatography to Small Molecule Analysis
合作研究:离子交换色谱-超临界流体色谱在小分子分析中的应用
- 批准号:
1904454 - 财政年份:2019
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Collaborative Research: Applying Ion-Exchange Chromatography-Supercritical Fluid Chromatography to Small Molecule Analysis
合作研究:离子交换色谱-超临界流体色谱在小分子分析中的应用
- 批准号:
1904919 - 财政年份:2019
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Collaborative Research: Computational and Experimental Investigation of High-Flux Heating of Supercritical Fluids in Microscale Geometries
合作研究:微尺度几何结构中超临界流体高通量加热的计算和实验研究
- 批准号:
1604538 - 财政年份:2016
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
MRI: Acquisition of a Liquid/Supercritical Fluid Chromatoghraphy Mass Spectrometer for Energy and Environmental Research
MRI:购买液体/超临界流体色谱质谱仪用于能源和环境研究
- 批准号:
1626100 - 财政年份:2016
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Collaborative Research: Computational and Experimental Investigation of High-Flux Heating of Supercritical Fluids in Microscale Geometries
合作研究:微尺度几何结构中超临界流体高通量加热的计算和实验研究
- 批准号:
1604433 - 财政年份:2016
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Quasi-free electron energy in supercritical carbon dioxide and water: A research program involving rural and first-generation STEM students
超临界二氧化碳和水中的准自由电子能:一项涉及农村和第一代 STEM 学生的研究项目
- 批准号:
1465180 - 财政年份:2015
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Research of functional evaluation of high-power, high-speed switch using a supercritical fluid
超临界流体大功率高速开关功能评估研究
- 批准号:
25420273 - 财政年份:2013
- 资助金额:
$ 14.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Foundamental research for microparticle formation by rapid expansion of supercritical solution method
超临界溶液法快速膨胀微粒形成的基础研究
- 批准号:
24560921 - 财政年份:2012
- 资助金额:
$ 14.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytical research on decomposition behavior of metal-organic compounds in supercritical fluids and its application for film-deposition process
超临界流体中金属有机化合物分解行为分析研究及其在薄膜沉积中的应用
- 批准号:
24760602 - 财政年份:2012
- 资助金额:
$ 14.52万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




