Evaluating the complexity of unsteady turbulent flows using excess entropy

使用过剩熵评估非定常湍流的复杂性

基本信息

  • 批准号:
    2327661
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Unsteady turbulent flows are known to be very complicated, but there has not been much effort to assess just how complex they are. The reason for their complexity is that the patterns of flow structures in terms of space and time contain both predictable and random elements. However, predictive laws or probability models cannot fully capture the behavior of such systems. The degree-of-complexity is a measure of how certain or random a flow field is in an unsteady state. This research will evaluate the degree-of-complexity using advanced mathematical methods. The knowledge acquired through this project can be applied to various other fields that involve complexity theory. The research topics explored in this project will be tailored to be suitable for undergraduate research programs and will be shared with K-12 teachers to enrich their class topics.The proposed research attempts to establish a new theoretical framework for quantifying the complexity of unsteady flows. Traditional complexity estimators typically operate on 1D data and are inadequate for analyzing 3D unsteady field results. To address this limitation, the proposed research tackles the issue by utilizing large-scale flow structures as the fundamental unit of analysis, which represent the collective motion of the flow over a defined period. These structures exhibit intricate 3D spatial interactions and can be classified and symbolized based on their topological characteristics, utilizing the persistent homology algorithm. The resulting symbolic sequence is then employed to assess complexity using the excess entropy method. This innovative approach diverges from conventional practices by using recurrent spatial-temporal patterns as the fundamental analysis unit instead of instantaneous fields, thereby enabling the separation of spatial interactions within a finite domain from the long-term evolution of the entire system. Furthermore, the proposed methodology investigates how large-scale structures self-organize to shape the flow, a pursuit that is challenging to achieve through short-time methods (e.g., finite-time Lyapunov exponent) or conventional statistical techniques (such as Reynolds stresses and spectrum). The examination of temporal order among flow patterns also yields insights into the dynamics of coherent structures, shedding light on fundamental inquiries such as the relationship between invariant solutions of the Navier-Stokes equation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
众所周知,非定常湍流非常复杂,但还没有太多的努力来评估它们到底有多复杂。其复杂性的原因是,流动结构在空间和时间上的模式既包含可预测的元素,也包含随机元素。然而,预测性规律或概率模型不能完全捕获此类系统的行为。复杂程度是对处于非稳定状态的流场的确定性或随机性的衡量。这项研究将使用先进的数学方法来评估复杂程度。通过这个项目获得的知识可以应用到涉及复杂性理论的各种其他领域。本课题所探讨的研究课题将适合本科生的研究项目,并将与K-12教师分享以丰富他们的课堂主题。本研究试图建立一个新的理论框架来量化非恒定流的复杂性。传统的复杂性估计器通常对一维数据进行操作,不足以分析三维非定常场结果。为了解决这一局限性,拟议的研究通过利用大尺度流动结构作为基本分析单位来解决这一问题,大尺度流动结构代表了定义时期内流动的集体运动。这些结构表现出错综复杂的三维空间相互作用,并可以根据它们的拓扑特征进行分类和符号化,利用持久同调算法。然后使用所得到的符号序列来使用超额熵方法来评估复杂性。这种创新的方法与传统做法不同,使用重复的时空模式作为基本分析单位,而不是瞬时场,从而能够将有限域内的空间相互作用与整个系统的长期演变分开。此外,所提出的方法研究了大规模结构如何自组织来塑造流动,这一追求通过短时间方法(例如有限时间Lyapunov指数)或传统统计技术(例如雷诺应力和谱)来实现是具有挑战性的。对流动模式中的时间顺序的研究也为连贯结构的动力学提供了洞察力,揭示了基本问题,如Navier-Stokes方程不变解之间的关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huixuan Wu其他文献

Mobility and volatility: What is behind the rising income inequality in the United States
流动性和波动性:美国收入不平等加剧的原因是什么
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huixuan Wu;Yaohan Li
  • 通讯作者:
    Yaohan Li
Wind Sensing and Estimation Using Small Fixed-Wing Unmanned Aerial Vehicles: A Survey
使用小型固定翼无人机进行风感测和估计:调查
Quantification of the complexity and unpredictability of a turbulent cylinder wake using excess entropy
使用过量熵量化湍流圆柱尾流的复杂性和不可预测性
Classification of Wind Farm Turbulence and Its Effects on General Aviation Aircraft and Airports : Technical Summary
风电场湍流的分类及其对通用航空飞机和机场的影响:技术摘要
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Zheng;Huixuan Wu
  • 通讯作者:
    Huixuan Wu
Real-time Multiple-particle Tracking in Ultrasonic Spray Pyrolysis
  • DOI:
    10.1016/j.mfglet.2022.07.010
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cade Albert;Lin Liu;John Haug;Huixuan Wu;Ruichen He;Jiarong Hong
  • 通讯作者:
    Jiarong Hong

Huixuan Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huixuan Wu', 18)}}的其他基金

CAREER: Quantification of the kinetic energy of particles in complex flows using magnetic particle tracking
职业:使用磁粒子跟踪量化复杂流中粒子的动能
  • 批准号:
    2403832
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Evaluating the complexity of unsteady turbulent flows using excess entropy
使用过剩熵评估非定常湍流的复杂性
  • 批准号:
    2400237
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Quantification of the kinetic energy of particles in complex flows using magnetic particle tracking
职业:使用磁粒子跟踪量化复杂流中粒子的动能
  • 批准号:
    1944187
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/Y00390X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
  • 批准号:
    23K23857
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Early Career Researcher Award
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了