IHBEM: Using socioeconomic, behavioral and environmental data to understand disease dynamics: exploring COVID-19 outcomes in Oklahoma

IHBEM:利用社会经济、行为和环境数据了解疾病动态:探索俄克拉荷马州的 COVID-19 结果

基本信息

  • 批准号:
    2327844
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

One of the most critical modern challenges is to better understand the where, why and how oflarge disease outbreak occurrence. Research shows that the frequency of large disease outbreaks is increasing over time globally, and yet differences in outcomes remain poorly understood. This research will explore the factors that drove variation in COVID-19 outcomes across the counties and metropolitan areas of Oklahoma, particularly which areas had more or fewer cases than would be expected based on their overall population size. The investigators will look at both environmental factors, such as weather patterns and air quality, and socioeconomic factors such as numbers of doctors and differences in the proportion of individuals that were willing to be vaccinated. The investigators will also conduct surveys of individual across the state to try and better understand why people made the healthcare choices that they did and how behavior drove differences in outcomes. Understanding all of these factors requires a team with diverse expertise. Traditionally, most mathematical and quantitative models for disease dynamics have been developed and studied by mathematicians, ecologists, and computer scientists. However, understanding differences in attitudes towards health care measures and how they originate is more the purview of social scientists and historians. By building a team of collaborators spanning all of these disciplines, the research team will be able to build a more complete picture of COVID-19 outcomes in Oklahoma. This will in turn suggest what actions may be most effective to try and best mitigate the effects of both COVID and other large-scale disease events in the future. The final product of this work will include a new data repository and a public-facing intelligent epidemiological modeling platform powered by Jupyter Notebooks. The project will also provide outreach and training, including to students from underrepresented groups.Increases in outbreak frequency seem to be related to globalization and other human activities. Yet the effects of most human behavioral, social and economic factors on outbreak risk are rarely quantified. Relevant social factors can be hard to measure, often needing specialists to generate and interpret data. However social scientists with expertise to do so are rarely trained in mathematical modelling of disease dynamics. To address these challenges, the investigators will focus on developing data sources and mathematical models that can be used to explore COVID-19 outcomes in Oklahoma. The project will be a true collaboration between social scientists and experts in modelling infectious diseases. Oklahoma is understudied, and is spatially heterogeneous such that models of disease dynamics in Oklahoma are likely to be generalizable to many other regions of the US. The Investigators will generate protocols for standardizing existing data on behavioral and socioeconomic factors as well as develop new data sources. The team will develop statistical models of past outbreaks, and mathematical models reflecting factors shown to have driven COVID-19 dynamics empirically. The latter work will demonstrate how baseline SIR-like models can be modified to reflect human behavioral factors. The Investigators will also contrast the performance of models based on existing data on socioeconomic factors with models incorporating new survey data on variation in behaviors and attitudes related to primary and secondary prevention. The code and datasets to be generated will be made freely available and searchable in an intelligent epidemiological modeling framework, which will enable other researchers to easily iterate on them.This project is jointly funded by the Division of Mathematical Sciences (DMS) in the Directorate of Mathematical and Physical Sciences (MPS) and the Division of Social and Economic Sciences (SES) in the Directorate of Social, Behavioral and Economic Sciences (SBE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代最关键的挑战之一是更好地了解大规模疾病爆发的地点、原因和方式。研究表明,随着时间的推移,全球大规模疾病暴发的频率正在增加,但对结果的差异仍然知之甚少。 这项研究将探讨导致俄克拉荷马州各县和大都市地区COVID-19结果变化的因素,特别是哪些地区的病例数比根据其总体人口规模预期的要多或少。 研究人员将研究环境因素,如天气模式和空气质量,以及社会经济因素,如医生数量和愿意接种疫苗的个人比例的差异。 调查人员还将对全州的个人进行调查,以更好地了解人们为什么做出他们所做的医疗保健选择,以及行为如何导致结果的差异。了解所有这些因素需要一个具有不同专业知识的团队。传统上,大多数疾病动力学的数学和定量模型都是由数学家,生态学家和计算机科学家开发和研究的。然而,理解对医疗保健措施的态度差异以及它们是如何产生的,更多的是社会科学家和历史学家的职权范围。通过建立一个跨越所有这些学科的合作者团队,研究团队将能够更全面地了解俄克拉荷马州的COVID-19结果。这反过来将表明什么样的行动可能是最有效的,以尽量减轻COVID和其他大规模疾病事件的影响在未来。这项工作的最终产品将包括一个新的数据存储库和一个面向公众的智能流行病学建模平台,该平台由Quixyter Notebooks提供支持。该项目还将提供外联和培训,包括向代表性不足群体的学生提供培训。然而,大多数人类行为、社会和经济因素对疫情风险的影响很少被量化。 相关的社会因素可能很难衡量,通常需要专家来生成和解释数据。 然而,具有这方面专业知识的社会科学家很少接受疾病动态数学建模的培训。 为了应对这些挑战,研究人员将专注于开发可用于探索俄克拉荷马州COVID-19结果的数据源和数学模型。 该项目将是社会科学家和传染病建模专家之间的真正合作。 俄克拉荷马州是研究不足,是空间异质性的疾病动力学模型在俄克拉荷马州可能是推广到美国的许多其他地区。研究人员将制定方案,以标准化有关行为和社会经济因素的现有数据,并开发新的数据源。该团队将开发过去疫情的统计模型,以及反映实证驱动COVID-19动态因素的数学模型。 后一项工作将展示如何修改基线SIR样模型,以反映人类行为因素。研究人员还将比较基于现有社会经济因素数据的模型的性能,以及纳入与一级和二级预防相关的行为和态度变化的新调查数据的模型。 将生成的代码和数据集将在智能流行病学建模框架中免费提供和搜索,这将使其他研究人员能够轻松地对其进行检索。该项目由数学和物理科学局(MPS)数学科学处(DMS)和社会科学局社会和经济科学处(SES)共同资助,行为和经济科学(SBE)。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Stephens其他文献

EFFECT OF INTRAVASCULAR LITHOTRIPSY ON MITRAL ANNULAR CALCIFICATION - A CADAVERIC STUDY
血管内碎石术对二尖瓣环钙化的影响 - 一项尸体研究
  • DOI:
    10.1016/s0735-1097(25)01287-2
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Jaffar Khan;Brian Lee Beatty;Doosup Shin;Eric Wolff;Scott Landman;Nicholas E.J. West;Patrick Stephens;KOSHIRO SAKAI;Roosha Parikh;David J. Cohen;Emma Caron;Matthew Cannata;Yasemin Ciftcikal;Fernando Sosa;Evan Shlofmitz;Richard A. Shlofmitz;Allen Jeremias;Omar K. Khalique;Ziad A. Ali
  • 通讯作者:
    Ziad A. Ali

Patrick Stephens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Stephens', 18)}}的其他基金

RCN Proposal: Macroecology of Infectious Disease
RCN 提案:传染病宏观生态学
  • 批准号:
    1316223
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
  • 批准号:
    10584245
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Using genomics and extensive phenotyping to dissect the relationships between substance use disorders and chronic pain
利用基因组学和广泛的表型分析来剖析物质使用障碍和慢性疼痛之间的关系
  • 批准号:
    10797779
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Linking genomic, physiological, and behavioral responses using a Drosophila model of heavy metal stress
使用重金属应激的果蝇模型将基因组、生理和行为反应联系起来
  • 批准号:
    10842536
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
  • 批准号:
    10724513
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Extraction of Vital Signs using a Telehealth Application for Asthma - EViTA-AThe purpose of this grant is to evaluate mobile devices to extract vitals signs to monitor patients with Asthma
使用哮喘远程医疗应用程序提取生命体征 - EViTA-A 这项拨款的目的是评估移动设备提取生命体征以监测哮喘患者
  • 批准号:
    10699530
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Using mHealth to investigate intersectionality and health behaviors: Implications for conceptual models and cancer prevention interventions for marginalized populations
使用移动医疗研究交叉性和健康行为:对边缘化人群的概念模型和癌症预防干预措施的影响
  • 批准号:
    10746886
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Reducing health disparities in foregut cancers by using modifiable barriers to predict risk for inequitable care: a novel implementation science-based approach
通过使用可修改的障碍来预测不公平护理的风险来减少前肠癌症的健康差异:一种基于科学的新颖实施方​​法
  • 批准号:
    10633373
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
The Impact of Medicare on Individual Longevity: Evidence from Medicare Introduction Using Big Data
医疗保险对个人寿命的影响:使用大数据引入医疗保险的证据
  • 批准号:
    10575297
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Low threshold economic engagement and health equity in inner-city populations: Assessing intersections of economic engagement, work, and health using The ASSET Study
内城区人口的低门槛经济参与和健康公平:利用 ASSET 研究评估经济参与、工作和健康的交叉点
  • 批准号:
    500543
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了