EAGER: Tunable Gas Separation Membrane Fabrication via Paramagnetically-induced Arrangement of 2D Nanomaterials
EAGER:通过顺磁诱导的二维纳米材料排列制造可调气体分离膜
基本信息
- 批准号:2327908
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Gas separation processes play a crucial role in chemical and fuel manufacturing and in reducing atmospheric emissions. Nanomaterial-based membranes hold immense potential to achieve more efficient and sustainable gas separations. These membranes, composed of atomically thin (2-dimensional or 2D) layers, allow the desired gas molecules to pass through with minimal resistance and high selectivity while blocking the passage of others. The arrangement of interparticle spacing and nanochannel pathways within the membrane layers determines the movement of molecules across it. Unfortunately, controlling these interlayer structures using existing large-scale membrane fabrication methods is difficult, hindering the effective commercialization of the most promising 2D nanomaterial-based membranes. This research project addresses the challenge of controlling molecular separations and nanoscale interlayer structures by developing an innovative approach to membrane fabrication that utilizes variable magnetic fields to manipulate the formation of nanochannels. The anticipated outcomes of this project include a functional 2D nanomaterial-based membrane with superior molecular transport properties and a novel technique for membrane fabrication, opening up new avenues for novel mixed-matrix-membrane filler materials. In addition to its technical contributions, this project will support the growth and development of two Ph.D. students and two undergraduate researchers. By engaging in this project, these students will acquire valuable technical and professional skills, positioning themselves for future careers in STEM fields. Furthermore, the project will actively involve the community through service and experiential learning activities and collaborations with K-12 schools. This engagement aims to foster societal well-being by creating knowledge-sharing opportunities and inspiring the next generation of scientists and engineers.This project addresses the need for a scalable two-dimensional (2D) lamellar membrane fabrication method to control nanochannel formation reliably, imparting superior selectivity and gas transport properties. The investigator anticipates that applying a controlled magnetic field to a paramagnetic 2D nanomaterials assembly during lamellar membrane fabrication will result in membranes with tunable selective nanochannels, where the applied field strength modulates the nanochannel formation mechanism. To determine the feasibility of this membrane fabrication concept, room temperature paramagnetization will be introduced into 2D nanomaterials through ion intercalation. A uniform magnetic field will be applied to achieve homogenous nanoparticle deposition, and the ability to control nanochannel size via the applied field strength will be evaluated. The agglomeration tendency will be assessed while using a magnetic field-induced assembly at high nanoparticle loading. Finally, the effect of void formation by in-situ nanoparticle migration during mixed-matrix membrane fabrication will be considered.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气体分离过程在化学和燃料制造以及减少大气排放方面发挥着至关重要的作用。纳米材料基膜在实现更有效和可持续的气体分离方面具有巨大的潜力。这些膜由原子薄的(二维或二维)层组成,允许所需的气体分子以最小的阻力和高选择性通过,同时阻止其他气体分子的通过。膜层内粒子间距和纳米通道的排列决定了分子在膜层上的运动。不幸的是,使用现有的大规模膜制造方法来控制这些层间结构是困难的,这阻碍了最有前途的二维纳米材料基膜的有效商业化。本研究项目通过开发一种创新的膜制造方法,利用可变磁场来操纵纳米通道的形成,解决了控制分子分离和纳米级层间结构的挑战。该项目的预期成果包括一种具有优越分子传输特性的功能二维纳米材料膜和一种新的膜制造技术,为新型混合基质-膜填充材料开辟了新的途径。除了技术贡献外,该项目还将支持两名博士生和两名本科生的成长和发展。通过参与这个项目,这些学生将获得宝贵的技术和专业技能,为自己未来在STEM领域的职业定位。此外,该项目将通过服务和体验式学习活动以及与K-12学校的合作,积极参与社区活动。这种参与旨在通过创造知识共享机会和激励下一代科学家和工程师来促进社会福祉。该项目解决了可扩展的二维(2D)层状膜制造方法的需求,以可靠地控制纳米通道的形成,赋予优越的选择性和气体输运特性。研究人员预计,在层状膜制造过程中,对顺磁性二维纳米材料组装施加可控磁场,将产生具有可调谐选择性纳米通道的膜,其中施加的磁场强度调节纳米通道的形成机制。为了确定这种膜制造概念的可行性,将通过离子嵌入将室温顺磁化引入二维纳米材料。将施加均匀的磁场来实现均匀的纳米颗粒沉积,并通过施加的磁场强度来控制纳米通道尺寸的能力将进行评估。在使用高纳米粒子负载的磁场诱导组装时,将评估团聚趋势。最后,将考虑纳米颗粒原位迁移对混合基质膜制备过程中孔隙形成的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Alshami其他文献
Synthesis and performance evaluation of poly (acrylamide-co-malonic acid) as FeS scale inhibitor: experimental and theoretical investigations
- DOI:
10.1007/s42247-023-00456-5 - 发表时间:
2023-01-27 - 期刊:
- 影响因子:4.100
- 作者:
Nadhem Ismail;Ali Alshami;Rem Jalab;Mohammed A. Saad;Ibnelwaleed A. Hussein - 通讯作者:
Ibnelwaleed A. Hussein
Machine learning-based prediction of scale formation in produced water as a tool for environmental monitoring
基于机器学习对采出水中结垢的预测作为一种环境监测工具
- DOI:
10.1016/j.rineng.2025.105223 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:7.900
- 作者:
Arash Tayyebi;Ali Alshami;Erfan Tayyebi;Ademola Owoade;MusabbirJahan Talukder;Nadhem Ismail;Zeinab Rabiei;Xue Yu;Glavic Tikeri - 通讯作者:
Glavic Tikeri
Ali Alshami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acquisition of a tunable diode laser system (TILDAS) Aerodyne Mini-TILDAS CO2 Isotope Monitor for triple isotope analyses of CO2 gas from carbonates
采购可调谐二极管激光系统 (TILDAS) Aerodyne Mini-TILDAS CO2 同位素监测仪,用于对碳酸盐中的 CO2 气体进行三重同位素分析
- 批准号:
2025107 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Tunable HDX and Ion-Molecule Interactions Using Doped-Gas Ion Mobility-Mass Spectrometry
合作研究:使用掺杂气体离子淌度质谱法进行可调谐 HDX 和离子分子相互作用
- 批准号:
2003042 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Tunable HDX and Ion-Molecule Interactions Using Doped-Gas Ion Mobility-Mass Spectrometry
合作研究:使用掺杂气体离子淌度质谱法进行可调谐 HDX 和离子分子相互作用
- 批准号:
2002852 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Electrically Tunable Graphene Gas Sensors
电可调石墨烯气体传感器
- 批准号:
1711227 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Development and application of highly tunable porous biopolymer and smart polymer scaffolds using pressurized gas expanded liquids
使用加压气体膨胀液体的高度可调多孔生物聚合物和智能聚合物支架的开发和应用
- 批准号:
479042-2015 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Strategic Projects - Group
Tunable compound semiconductor lasers for mid-infrared trace gas-sensing
用于中红外微量气体传感的可调谐化合物半导体激光器
- 批准号:
102889 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Collaborative R&D
Development and application of highly tunable porous biopolymer and smart polymer scaffolds using pressurized gas expanded liquids
使用加压气体膨胀液体的高度可调多孔生物聚合物和智能聚合物支架的开发和应用
- 批准号:
479042-2015 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Strategic Projects - Group
Development of remote sensing system for volcanic gas using a laser-radar by the tunable-wavelength Infrared laser
利用可调谐波长红外激光的激光雷达火山气体遥感系统的开发
- 批准号:
25800252 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Widely-tunable mid-infrared semiconductor lasers for spectroscopy applications and gas sensing
用于光谱应用和气体传感的宽可调中红外半导体激光器
- 批准号:
417896-2011 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Idea to Innovation
Tunable Micro-Optofluidic Ring Resonator Arrays as Micro Gas Chromatograph Detectors
可调谐微光流控环形谐振器阵列作为微型气相色谱检测器
- 批准号:
1128157 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Standard Grant














{{item.name}}会员




