ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
基本信息
- 批准号:2328540
- 负责人:
- 金额:$ 79.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Classical information technologies use optical interconnects to relay information between different media platforms. This is typically done by fiber optics, relaying digital ones and zeros as pulses with light on and off, respectively. For classical technologies, it is not necessary to precisely control how many photons are emitted or detected, only to be able to distinguish bright from dark. Quantum information technologies require quantum interconnects that can transmit single pairs of entangled photons, which is much more challenging. In this regard, a compact electrically-activated source of single photons would be an important advance. One approach is to utilize single photons emitted from individual Erbium (Er) atoms at standard telecommunication wavelengths. The Er atoms must be embedded into a semiconductor host to enable electrical excitation, and Gallium Arsenide (GaAs) is ideal due to its well-established growth and nanofabrication. However, attaining emission only from the Er atoms, rather than the GaAs host, remains a challenge. One way to improve the rate of photon emission from Er atoms is to embed the atoms into nanocavities. The primary objective of this project is to investigate the application of Er-doped GaAs nanocavity devices for QISE, with the ultimate aim of developing an on-chip electrically-pumped single-photon device operating at telecom wavelengths. This project brings together an expert in Rare Earth (RE) physics for classical optoelectronic applications from West Chester University (WCU) and experts in scalable quantum photonic technologies from the University of Delaware (UD). Additionally, this partnership advances a new 3+2 dual degree program where students earn a bachelor's degree in physics from WCU and a master's degree in QISE from UD in five years. This accelerated educational track is designed to support low-income and underrepresented students, promoting diversity in the QISE workforce while expediting its growth.Technical Abstract: Creating scalable and reliable QISE technologies requires material and device platforms that preserve quantum coherence and provide suitable interactions to produce and control entanglement. Defect-based quantum emitters in wide bandgap semiconductors have emerged as leading candidates for future QISE applications due to their potential for scalability and integration. Rare Earth-doped insulators have been extensively studied because the embedded RE ions have sharp, stable optical transitions and long lifetimes that facilitate high-fidelity quantum control. RE-doped semiconductors, however, have not previously received similar attention for QISE due to the limited availability of samples and challenges associated with competing native defects and background spins. If these challenges can be overcome, the RE-doped semiconductor platform could fill a significant gap for quantum technologies by providing a spectrally-stable electrically-pumped single-photon source, quantum memory, or element of a quantum repeater operating in the telecom C-band. In this approach, single Er ions are coupled to photonic device components, allowing the characterization of Er-doped GaAs as a single-photon source via anti-bunching experiments. These new devices will be achieved through controlled dilute doping and by enhancing the radiative rates of the Er ions using nanophotonic structures. As part of this effort, the growth of Er-doped GaAs at UD and the design and fabrication of new nanophotonic devices incorporating waveguiding and out-coupling schemes for enhanced light-collection efficiency are established.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:经典信息技术使用光互连在不同媒体平台之间传递信息。这通常是通过光纤来完成的,在光打开和关闭的情况下,分别将数字1和0作为脉冲进行中继。对于经典技术来说,不需要精确控制发射或检测到多少光子,只需能够区分明暗。量子信息技术需要能够传输单对纠缠光子的量子互连,这是更具挑战性的。在这方面,一种紧凑的电激活单光子源将是一个重要的进步。一种方法是利用单个Erb(Er)原子在标准电信波长发射的单光子。Er原子必须嵌入到半导体主体中才能实现电激发,而砷化镓(GaAs)由于其良好的生长和纳米制造能力而成为理想的材料。然而,仅从Er原子获得发射,而不是从GaAs主体获得发射,仍然是一个挑战。提高Er原子的光子发射速率的一种方法是将原子嵌入纳米腔中。本项目的主要目的是研究掺Er的砷化镓纳米腔器件在QISE中的应用,最终目的是开发一种工作在电信波长的片上电泵浦单光子器件。该项目汇集了来自西切斯特大学(WCU)的用于经典光电子应用的稀土(RE)物理专家和来自特拉华大学(UD)的可扩展量子光子技术专家。此外,这一合作关系还推进了一个新的3+2双学位项目,学生在五年内获得威斯康星大学的物理学学士学位和密歇根大学的QISE硕士学位。这一加速的教育轨道旨在支持低收入和代表性不足的学生,促进QISE劳动力的多样性,同时加快其增长。技术摘要:创建可扩展和可靠的QISE技术需要材料和设备平台,以保持量子相干并提供适当的交互来产生和控制纠缠。基于缺陷的宽禁带半导体量子发射体因其在可扩展性和集成性方面的潜力而成为未来QISE应用的主要候选者。稀土掺杂的绝缘体被广泛研究,因为嵌入的稀土离子具有尖锐、稳定的光学跃迁和长寿命,有利于高保真的量子控制。然而,由于样品可获得性有限,以及与竞争的本征缺陷和背景自旋相关的挑战,重新掺杂半导体以前没有受到QISE的类似关注。如果能够克服这些挑战,稀土掺杂半导体平台可以通过提供光谱稳定的电泵浦单光子源、量子存储器或在电信C波段运行的量子中继器的元件来填补量子技术的一个重大空白。在这种方法中,单个Er离子被耦合到光子器件组件,允许通过反聚束实验来表征掺Er的GaAs单光子源。这些新器件将通过控制稀薄掺杂和使用纳米光子结构提高Er离子的辐射速率来实现。作为这项工作的一部分,在UD生长掺Er砷化镓,以及设计和制造新的纳米光子器件,结合了波导和外耦合方案,以提高光收集效率。该项目由多学科活动办公室(MPS/OMA)和技术前沿计划(TIP/TF)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brandon Mitchell其他文献
Development of the Transfer Package for Constraint Induced Cognitive Training: Transferring Cognitive Improvements from the Laboratory to the Real World
- DOI:
10.1016/j.apmr.2020.09.100 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Jason Blake;Brandon Mitchell;Staci McKay;Gitendra Uswatte;Edward Taub - 通讯作者:
Edward Taub
Developing the Shaping Procedures Used with Constraint-Induced Cognitive Training
- DOI:
10.1016/j.apmr.2020.09.107 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Brandon Mitchell;Jason Blake;Staci McKay;Gitendra Uswatte;Edward Taub - 通讯作者:
Edward Taub
First Step Next: A Best-Evidence Synthesis of Replication Randomized Controlled Trials From 2009 to 2021
下一步:2009 年至 2021 年复制随机对照试验的最佳证据综合
- DOI:
10.1177/07419325211068145 - 发表时间:
2022 - 期刊:
- 影响因子:2.4
- 作者:
A. Frey;Jason W. Small;H. Walker;Brandon Mitchell;J. Seeley;Edward G. Feil;Jon Lee;S. Forness - 通讯作者:
S. Forness
高温アニール処理を施したEu,O共添加GaNの光励起・電流注入下における発光特性
高温退火处理的Eu,O共掺GaN在光激发和电流注入下的发光特性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
岩谷孟学;市川修平;Dolf Timmerman;Volkmar Dierolf;Hayley Austin;Brandon Mitchell;舘林潤;藤原康文 - 通讯作者:
藤原康文
Brandon Mitchell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brandon Mitchell', 18)}}的其他基金
Equipment: MRI: Track 1 Acquisition of a Tunable Ultrafast Spectroscopy System at a Primarily Undergraduate Institution to Enhance Undergraduate Training
设备: MRI:第一轨道在本科院校采购可调谐超快光谱系统,以加强本科生培训
- 批准号:
2319135 - 财政年份:2023
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
RUI: Next Generation Rare Earth Based Light-Emitters for Solid-State Display & Quantum Information Technology Applications
RUI:用于固态显示的下一代稀土发光体
- 批准号:
2129183 - 财政年份:2021
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
Increasing the Persistence of STEM Majors through Nanoscience-Themed Activities that Support Academic, Professional, and Personal Engagement and Development
通过支持学术、专业和个人参与和发展的纳米科学主题活动,提高 STEM 专业的持久性
- 批准号:
2028230 - 财政年份:2021
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
RUI: Fate and Impact of CuPro 5000 and Kocide 3000: A Microcosm Based Study
RUI:CuPro 5000 和 Kocide 3000 的命运和影响:基于微观的研究
- 批准号:
1748439 - 财政年份:2018
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
相似海外基金
FDSS Track 1: A New Paradigm for Faculty Development in Geospace Science at Georgia Tech
FDSS Track 1:佐治亚理工学院地球空间科学教师发展的新范式
- 批准号:
2347873 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Continuing Grant
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
- 批准号:
2327229 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Innovative chemical microsensor development for in situ, real-time monitoring of priority water pollutants to protect water quality
NSF Convergence Accelerator Track L:创新化学微传感器开发,用于对重点水污染物进行原位实时监测,以保护水质
- 批准号:
2344373 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
Aerobiome based genomic surveillance of fungicide resistance to track the development and spread of AMR in plant pathogens and the wider environment
基于空气生物组的杀菌剂抗性基因组监测,以追踪植物病原体和更广泛环境中 AMR 的发展和传播
- 批准号:
MR/Y034023/1 - 财政年份:2024
- 资助金额:
$ 79.76万 - 项目类别:
Research Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
- 批准号:
2320407 - 财政年份:2023
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
- 批准号:
2320405 - 财政年份:2023
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
IRES Track I: Development of the Neutron Optics Parity and Time Violation Experiment in Japan
IRES Track I:日本中子光学宇称和时间违反实验的进展
- 批准号:
2246335 - 财政年份:2023
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant
Development of high-throughput SARS-CoV-2 qPCR and amplicon sequencing to track COVID-19 pandemic
开发高通量 SARS-CoV-2 qPCR 和扩增子测序来追踪 COVID-19 大流行
- 批准号:
23KF0036 - 财政年份:2023
- 资助金额:
$ 79.76万 - 项目类别:
Grant-in-Aid for JSPS Fellows
RII Track-4: NSF: Development, Characterization and Performance Evaluation of Surface Engineered Additively Manufactured Parts for Nuclear Reactors
RII Track-4:NSF:核反应堆表面工程增材制造零件的开发、表征和性能评估
- 批准号:
2332471 - 财政年份:2023
- 资助金额:
$ 79.76万 - 项目类别:
Standard Grant