CAREER: A Skill-Driven Cooperative Learning Framework for Cyber-Physical Autonomy
职业:技能驱动的网络物理自主合作学习框架
基本信息
- 批准号:2047010
- 负责人:
- 金额:$ 50.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates new reinforcement learning (RL) approaches for cyber-physical autonomy to bridge the gap between current intelligent systems and human-level intelligence. The nature of many cyber-physical systems (CPS) is distributed, heterogeneous, and high-dimensional, making the hand-coded functions and task-specific information hard to design in the learning scheme. Large amount of training data is often required for achieving the desired performance, however this limits the generalization to other tasks. Hence, this project is to explore the new RL strategies to enable CPS with the capabilities of autonomous learning and generalization to rapidly adapt in unknown situations that were not assumed in the design phase. The results are expected to transform how agents interact in high-dimensional and heterogeneous environment, and therefore could potentially provide in-depth findings for exploring creativity in frontier Artificial Intelligence techniques. The goal of this project is to advance foundational knowledge and scientific methodologies of reinforcement learning for generalization and scalability in CPS. Motivated by the recent research in neurobiology and psychology, this project will design a new skill-driven intelligent control approach for CPS that can learn more expressive extended skills to autonomously and adaptively handle unknown situations without further human intervention. The proposed approach will also develop cooperative learning strategies to share with extended skills to facilitate exploration and prevent agents from getting confused by the action details. In addition, this project will develop self-motivated learning structures to contribute towards the global objectives for team-wide success in a distributed perspective. The developed methods and associated architectures will provide critical insights and guidelines to foster autonomous learning and generalization in CPS. The integration of research and education plans will prepare the future workforce in the fields of CPS, artificial intelligence, learning and control. The outreach activities will build connections between the CPS research, and minority groups (women and Hispanic students), K-12, and college students through various learning approaches.This project is in response to the NSF CAREER 20-525 solicitation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了新的强化学习(RL)方法,用于网络物理自治,以弥合当前智能系统与人类智能之间的差距。许多信息物理系统(CPS)的本质是分布式的,异构的,高维的,使得手工编码的功能和特定于任务的信息很难设计的学习方案。通常需要大量的训练数据来实现所需的性能,但这限制了对其他任务的推广。因此,本项目旨在探索新的强化学习策略,使CPS具有自主学习和泛化能力,能够快速适应设计阶段未假设的未知情况。这些结果有望改变智能体在高维和异构环境中的交互方式,因此可能为探索前沿人工智能技术中的创造力提供深入的研究结果。 该项目的目标是推进强化学习的基础知识和科学方法,以实现CPS的泛化和可扩展性。受神经生物学和心理学最新研究的启发,该项目将为CPS设计一种新的技能驱动的智能控制方法,该方法可以学习更具表达力的扩展技能,以自主和自适应地处理未知情况,而无需进一步的人为干预。所提出的方法还将开发合作学习策略,以共享扩展的技能,以促进探索,并防止代理人混淆的行动细节。此外,该项目将发展自我激励的学习结构,以促进从分布式角度实现整个团队成功的全球目标。开发的方法和相关的架构将提供重要的见解和指导方针,以促进自主学习和概括CPS。研究和教育计划的整合将为CPS,人工智能,学习和控制领域的未来劳动力做好准备。通过各种学习方法,在CPS研究与少数群体(妇女和西班牙裔学生)、K-12和大学生之间建立联系。该项目是对NSF CAREER 20-525征集的回应。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Intelligent and Secure Control Approach for Nonlinear Systems under Attacks
受攻击的非线性系统的智能安全控制方法
- DOI:10.1109/ssci50451.2021.9659857
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhong, Xiangnan;Ni, Zhen
- 通讯作者:Ni, Zhen
A new deep Q-learning method with dynamic epsilon adjustment and path planner assisted techniques for Turtlebot mobile robot
- DOI:10.1117/12.2663695
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:W. Cheng;Zhengbin Ni;Xiangnan Zhong
- 通讯作者:W. Cheng;Zhengbin Ni;Xiangnan Zhong
A Neural-Reinforcement-Learning-based Guaranteed Cost Control for Perturbed Tracking Systems
基于神经强化学习的扰动跟踪系统保证成本控制
- DOI:10.1109/tai.2023.3346334
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhong, Xiangnan;Ni, Zhen
- 通讯作者:Ni, Zhen
Kernelized Deep Learning for Matrix Factorization Recommendation System Using Explicit and Implicit Information
- DOI:10.1109/tnnls.2022.3182942
- 发表时间:2022-06
- 期刊:
- 影响因子:10.4
- 作者:Xiaoyao Zheng;Zhen Ni;Xiangnan Zhong;Yonglong Luo
- 通讯作者:Xiaoyao Zheng;Zhen Ni;Xiangnan Zhong;Yonglong Luo
Multi-Virtual-Agent Reinforcement Learning for a Stochastic Predator-Prey Grid Environment
- DOI:10.1109/ijcnn55064.2022.9891898
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Yanbin Lin;Z. Ni;Xiangnan Zhong
- 通讯作者:Yanbin Lin;Z. Ni;Xiangnan Zhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangnan Zhong其他文献
Fuzzy-Based Goal Representation Adaptive Dynamic Programming
基于模糊的目标表示自适应动态规划
- DOI:
10.1109/tfuzz.2015.2505327 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Yufei Tang;Haibo He;Zhen Ni;Xiangnan Zhong;Dongbin Zhao;Xin Xu - 通讯作者:
Xin Xu
Adaptive Dynamic Programming for Robust Regulation and Its Application to Power Systems
鲁棒调节的自适应动态规划及其在电力系统中的应用
- DOI:
10.1109/tie.2017.2782205 - 发表时间:
2018-07 - 期刊:
- 影响因子:7.7
- 作者:
Xiong Yang;Haibo He;Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
A fast federated reinforcement learning approach with phased weight-adjustment technique
一种具有分阶段权重调整技术的快速联邦强化学习方法
- DOI:
10.1016/j.neucom.2025.129550 - 发表时间:
2025-04-14 - 期刊:
- 影响因子:6.500
- 作者:
Yiran Pang;Zhen Ni;Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
Comparative studies of power grid security with network connectivity and power flow information using unsupervised learning
使用无监督学习的网络连接和潮流信息的电网安全比较研究
- DOI:
10.1109/ijcnn.2016.7727542 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shiva Poudel;Z. Ni;Xiangnan Zhong;Haibo He - 通讯作者:
Haibo He
On-Line Adaptive Dynamic Programming for Feedback Control
- DOI:
10.23860/diss-zhong-xiangnan-2017 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
Xiangnan Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangnan Zhong', 18)}}的其他基金
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
- 批准号:
1850240 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
- 批准号:
1947418 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917276 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1947419 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
相似海外基金
The cognitive neuroscience of motor skill learning
运动技能学习的认知神经科学
- 批准号:
FT230100656 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
ARC Future Fellowships
Building Productive-Skill-Integrated Active Extensive Listen-and-Read Program
建立生产技能综合主动广泛听读计划
- 批准号:
24K04101 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combining job mobility patterns and vacancy data to better measure labour market opportunities and skill mismatch
结合工作流动模式和职位空缺数据,更好地衡量劳动力市场机会和技能不匹配
- 批准号:
ES/X011887/1 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Research Grant
CAREER: Robot Learning of Complex Tasks via Skill Reusability and Refinement
职业:机器人通过技能的可重用性和改进来学习复杂的任务
- 批准号:
2237463 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Continuing Grant
NSF-BSF: Reactivation and sleep in visual and motor skill acquisition: learning beyond training
NSF-BSF:视觉和运动技能习得中的重新激活和睡眠:训练之外的学习
- 批准号:
2241417 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
Development of skill evaluation models for systematic learning in Expressive Activity and Dance classes
开发表达活动和舞蹈课程系统学习的技能评估模型
- 批准号:
23K02358 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Skill Discovery and Transfer for Adaptive Activity Understanding
适应性活动理解的技能发现和迁移
- 批准号:
22KJ0999 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Situational Assessment as a Marker of Cognitive Skill Decay
情境评估作为认知技能衰退的标志
- 批准号:
DP230101607 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Discovery Projects
Parameterizing the relationship between motor cortical reactivation during sleep and motor skill acquisition in the freely behaving marmoset
参数化睡眠期间运动皮层重新激活与自由行为狨猴运动技能习得之间的关系
- 批准号:
10658109 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Enhancing Skill Acquisition in VR Rhythm Games: Leveraging DDA and PCG for Effective Learning Map Generation
增强 VR 节奏游戏中的技能习得:利用 DDA 和 PCG 生成有效的学习地图
- 批准号:
2890032 - 财政年份:2023
- 资助金额:
$ 50.36万 - 项目类别:
Studentship














{{item.name}}会员




