CAREER: A Skill-Driven Cooperative Learning Framework for Cyber-Physical Autonomy
职业:技能驱动的网络物理自主合作学习框架
基本信息
- 批准号:2047010
- 负责人:
- 金额:$ 50.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates new reinforcement learning (RL) approaches for cyber-physical autonomy to bridge the gap between current intelligent systems and human-level intelligence. The nature of many cyber-physical systems (CPS) is distributed, heterogeneous, and high-dimensional, making the hand-coded functions and task-specific information hard to design in the learning scheme. Large amount of training data is often required for achieving the desired performance, however this limits the generalization to other tasks. Hence, this project is to explore the new RL strategies to enable CPS with the capabilities of autonomous learning and generalization to rapidly adapt in unknown situations that were not assumed in the design phase. The results are expected to transform how agents interact in high-dimensional and heterogeneous environment, and therefore could potentially provide in-depth findings for exploring creativity in frontier Artificial Intelligence techniques. The goal of this project is to advance foundational knowledge and scientific methodologies of reinforcement learning for generalization and scalability in CPS. Motivated by the recent research in neurobiology and psychology, this project will design a new skill-driven intelligent control approach for CPS that can learn more expressive extended skills to autonomously and adaptively handle unknown situations without further human intervention. The proposed approach will also develop cooperative learning strategies to share with extended skills to facilitate exploration and prevent agents from getting confused by the action details. In addition, this project will develop self-motivated learning structures to contribute towards the global objectives for team-wide success in a distributed perspective. The developed methods and associated architectures will provide critical insights and guidelines to foster autonomous learning and generalization in CPS. The integration of research and education plans will prepare the future workforce in the fields of CPS, artificial intelligence, learning and control. The outreach activities will build connections between the CPS research, and minority groups (women and Hispanic students), K-12, and college students through various learning approaches.This project is in response to the NSF CAREER 20-525 solicitation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了用于网络物理自主权的新的强化学习方法(RL)方法,以弥合当前智能系统与人类水平情报之间的差距。许多网络物理系统(CPS)的性质是分布,异质和高维的,这使得在学习方案中难以设计手工编码的功能和特定于任务的信息。实现所需的性能通常需要大量培训数据,但是这将概括限制在其他任务上。因此,该项目旨在探索新的RL策略,以使CP具有自主学习和概括的能力,以在设计阶段未假定的未知情况下快速适应。预计结果将改变代理在高维和异质环境中的相互作用,因此有可能提供深入的发现,以探索边境人工智能技术中的创造力。 该项目的目的是推进CPS概括和可伸缩性的强化学习的基础知识和科学方法。在最近的神经生物学和心理学研究的激励下,该项目将为CPS设计一种新的技能驱动的智能控制方法,可以学习更具表现力的扩展技能,以自主和适应地处理未知情况,而无需进一步的人类干预。拟议的方法还将制定合作学习策略,以分享扩展的技能,以促进探索并防止代理人对动作细节感到困惑。此外,该项目将开发自我激励的学习结构,以在分布式观点中为全球范围的全球目标做出贡献。开发的方法和相关架构将提供关键的见解和指南,以促进CPS中的自主学习和泛化。研究和教育计划的整合将为CP,人工智能,学习和控制领域的未来劳动力做好准备。 The outreach activities will build connections between the CPS research, and minority groups (women and Hispanic students), K-12, and college students through various learning approaches.This project is in response to the NSF CAREER 20-525 solicitation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Intelligent and Secure Control Approach for Nonlinear Systems under Attacks
受攻击的非线性系统的智能安全控制方法
- DOI:10.1109/ssci50451.2021.9659857
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhong, Xiangnan;Ni, Zhen
- 通讯作者:Ni, Zhen
A new deep Q-learning method with dynamic epsilon adjustment and path planner assisted techniques for Turtlebot mobile robot
- DOI:10.1117/12.2663695
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:W. Cheng;Zhengbin Ni;Xiangnan Zhong
- 通讯作者:W. Cheng;Zhengbin Ni;Xiangnan Zhong
A Neural-Reinforcement-Learning-based Guaranteed Cost Control for Perturbed Tracking Systems
基于神经强化学习的扰动跟踪系统保证成本控制
- DOI:10.1109/tai.2023.3346334
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhong, Xiangnan;Ni, Zhen
- 通讯作者:Ni, Zhen
Multi-Virtual-Agent Reinforcement Learning for a Stochastic Predator-Prey Grid Environment
- DOI:10.1109/ijcnn55064.2022.9891898
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Yanbin Lin;Z. Ni;Xiangnan Zhong
- 通讯作者:Yanbin Lin;Z. Ni;Xiangnan Zhong
Kernelized Deep Learning for Matrix Factorization Recommendation System Using Explicit and Implicit Information
- DOI:10.1109/tnnls.2022.3182942
- 发表时间:2022-06
- 期刊:
- 影响因子:10.4
- 作者:Xiaoyao Zheng;Zhen Ni;Xiangnan Zhong;Yonglong Luo
- 通讯作者:Xiaoyao Zheng;Zhen Ni;Xiangnan Zhong;Yonglong Luo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangnan Zhong其他文献
Fuzzy-Based Goal Representation Adaptive Dynamic Programming
基于模糊的目标表示自适应动态规划
- DOI:
10.1109/tfuzz.2015.2505327 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Yufei Tang;Haibo He;Zhen Ni;Xiangnan Zhong;Dongbin Zhao;Xin Xu - 通讯作者:
Xin Xu
Adaptive Dynamic Programming for Robust Regulation and Its Application to Power Systems
鲁棒调节的自适应动态规划及其在电力系统中的应用
- DOI:
10.1109/tie.2017.2782205 - 发表时间:
2018-07 - 期刊:
- 影响因子:7.7
- 作者:
Xiong Yang;Haibo He;Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
Comparative studies of power grid security with network connectivity and power flow information using unsupervised learning
使用无监督学习的网络连接和潮流信息的电网安全比较研究
- DOI:
10.1109/ijcnn.2016.7727542 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shiva Poudel;Z. Ni;Xiangnan Zhong;Haibo He - 通讯作者:
Haibo He
On-Line Adaptive Dynamic Programming for Feedback Control
- DOI:
10.23860/diss-zhong-xiangnan-2017 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
Xiangnan Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangnan Zhong', 18)}}的其他基金
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
- 批准号:
1850240 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
- 批准号:
1947418 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917276 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1947419 - 财政年份:2019
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
相似国自然基金
数据驱动的智联产品开发项目多技能人员智能推荐与调度研究
- 批准号:72301159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
转岗还是离开?知识驱动下制造业技能员工职业可持续性的概念测量、前因、后效及干预机制研究
- 批准号:72272136
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
大数据驱动基于技能可迁移价值的动态职业规划方法与应用研究
- 批准号:72201143
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
交互力驱动的机器人柔顺作业技能高效学习与调控
- 批准号:62203126
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
大数据驱动基于技能可迁移价值的动态职业规划方法与应用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovering novel predictors of minimally verbal outcomes in autism through computational modeling
通过计算模型发现自闭症最低限度语言结果的新预测因素
- 批准号:
10521901 - 财政年份:2022
- 资助金额:
$ 50.36万 - 项目类别:
Culturally-responsive community-driven substance use recovery for Black and Latinx populations
文化响应型社区驱动的黑人和拉丁裔人群药物使用恢复
- 批准号:
10645536 - 财政年份:2022
- 资助金额:
$ 50.36万 - 项目类别:
Discovering novel predictors of minimally verbal outcomes in autism through computational modeling
通过计算模型发现自闭症最低限度语言结果的新预测因素
- 批准号:
10676845 - 财政年份:2022
- 资助金额:
$ 50.36万 - 项目类别:
Artificial Intelligence Driven Tools for Objective Surgical Performance Improvement
人工智能驱动工具可客观提高手术表现
- 批准号:
10279444 - 财政年份:2021
- 资助金额:
$ 50.36万 - 项目类别:
A Virtual Coach to Enhance Surgical Training using Human-Centric Modeling and Adaptive Haptic Guidance
使用以人为本的建模和自适应触觉指导来增强手术训练的虚拟教练
- 批准号:
10491714 - 财政年份:2020
- 资助金额:
$ 50.36万 - 项目类别: