Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources

协作研究:学习电网边缘资源的安全可靠运行

基本信息

  • 批准号:
    2330154
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This NSF project aims to address the challenges and opportunities presented by the rapid proliferation of Grid Edge Resources (GERs) in modern power systems. Examples include distributed generators and smart inverters, smart thermostatically controlled loads, electric vehicles, and battery energy storage systems. Since GERs operate beyond traditional utility network boundaries and are controlled by customers, they introduce variable levels of controllability, observability, and vulnerability to cyber-attacks. The project will bring transformative change to the field of power system management through the development of a new analytical foundation and data-driven control methodologies to ensure the safe and secure operation of GERs. The intellectual merits of the project include the development of novel algorithmically robust data-driven control strategies that can withstand the unavoidable cyber vulnerabilities of GERs, and the advancement of our understanding of GER behavior and its impact on power system dynamics. The broader impacts of the project include enhancing the safety and security of the nation's critical energy infrastructure, improving the reliability of artificial intelligence and data-driven control methods across various safety-critical engineering systems, and promoting diversity and inclusion in two minority-serving institutions.The technical objectives of this project will be achieved by introducing a novel combination of model-based and data-driven control methods to guarantee that GERs are operated without violating power distribution systems’ constraints, despite the lack of direct control and validation capabilities in managing GERs in real-world power systems. Our approach ensures network-safe exploration and data-driven control at any stage of operation, despite model uncertainty. To address the challenge of unavoidable corrupt inputs from GERs, such as corruption in sensed load, we will develop grid edge control algorithms that are algorithmically robust to vulnerabilities in GERs. The proposed methods and results will be tested under realistic scenarios, considering diverse characteristics of various GREs, and under different network operating conditions and constraints, using real-world GER data and industry-standard computer simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在应对现代电力系统中网格边缘资源(GER)快速增长所带来的挑战和机遇。示例包括分布式发电机和智能逆变器、智能恒温控制负载、电动汽车和电池储能系统。由于GERs的运行超出了传统的公用事业网络边界,并由客户控制,因此它们引入了可变的可控性,可观察性和网络攻击脆弱性。该项目将通过开发新的分析基础和数据驱动的控制方法,为电力系统管理领域带来变革性的变化,以确保GER的安全运行。该项目的智力优势包括开发新的算法强大的数据驱动的控制策略,可以承受不可避免的网络漏洞的GER,和我们的理解的进步格尔行为及其对电力系统动态的影响。该项目的更广泛影响包括加强国家关键能源基础设施的安全性,提高各种安全关键工程系统的人工智能和数据驱动控制方法的可靠性,和促进两个少数群体服务机构的多样性和包容性。该项目的技术目标将通过引入基于模型和数据的新组合来实现,驱动控制方法,以保证在不违反配电系统约束的情况下操作GER,尽管在现实世界的电力系统中缺乏管理GER的直接控制和验证能力。我们的方法确保在任何操作阶段进行网络安全的探索和数据驱动的控制,尽管模型存在不确定性。为了解决来自GERs的不可避免的损坏输入的挑战,例如感测负载中的损坏,我们将开发对GERs中的漏洞具有算法鲁棒性的网格边缘控制算法。建议的方法和结果将在现实场景下进行测试,考虑到各种GRES的不同特性,并在不同的网络运行条件和限制下,使用真实世界的格尔数据和行业标准的计算机模拟。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahnoosh Alizadeh其他文献

Optimistic Safety for Online Convex Optimization with Unknown Linear Constraints
具有未知线性约束的在线凸优化的乐观安全性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spencer Hutchinson;Tianyi Chen;Mahnoosh Alizadeh
  • 通讯作者:
    Mahnoosh Alizadeh
Learning prosumer behavior in energy communities: Integrating bilevel programming and online learning
能源社区中学习产消者行为:整合双层规划与在线学习
  • DOI:
    10.1016/j.apenergy.2025.125932
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Bennevis Crowley;Jalal Kazempour;Lesia Mitridati;Mahnoosh Alizadeh
  • 通讯作者:
    Mahnoosh Alizadeh

Mahnoosh Alizadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mahnoosh Alizadeh', 18)}}的其他基金

CPS: Small: Collaborative Research: Models and System-Level Coordination Algorithms for Power-in-the-Loop Autonomous Mobility-on-Demand Systems
CPS:小型:协作研究:功率在环自主按需移动系统的模型和系统级协调算法
  • 批准号:
    1837125
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Learning and Control Algorithms for Electricity Demand Response with Humans-in-the-Loop
职业:人在环电力需求响应的学习和控制算法
  • 批准号:
    1847096
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了