EAGER: SaTC: Sweaty Digits: Bridging Chemistry and AI-Empowered Imaging for Secure and Trustworthy Human Identity Verification
EAGER:SaTC:汗水数字:桥接化学和人工智能成像,实现安全可信的人类身份验证
基本信息
- 批准号:2330240
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Compared to current biometric technologies, sweat can better represent human identity with more discerning characteristics, overcoming limitations of existing systems such as demographic differentials (e.g., lower accuracy in women) and vulnerability to spoof attacks. This research aims to define human identity through richer signals, not only spatial features but also associated chemical content, captured by a hyperspectral imager without the use of reagents. This proposal aims to create a new representation of human identity based on the analysis of sweat through hyperspectral imaging (HSI), which enables further research to explore sweat as a solution for efficient, accurate, and secure biometric human identity verification. Sweat can provide a meticulous perspective on identity by incorporating chemical properties of a biometric trait. By focusing on an HSI perspective of sweat as biometric modality, this project builds a deeper profile of the identity makes the link between the genuine person and the digital representation stronger and, subsequently, the system processing it less prone to errors and more resilient to spoofing. The project's broader significance and importance is to bridge advances in chemical sweat analysis to imaging that builds foundations for reasoning on HSI learning techniques applied to sweat. The project’s novelties include creating profiles of sweat metabolites using HSI, thereby creating a digital human identity based on sweat. To accomplish this objective, this project focuses on confirming that metabolites can be extracted from sweat excreted from human fingertips, confirming their reproducibility, and creating an HSI reference for each metabolite of interest. Due to diversity in the sensing approach, spectral references obtained through traditional spectroscopy for sweat metabolites cannot be used as HSI reference. The research investigates important aspects such as how to acquire appropriate sweat samples and whether the deposited sample and the capture process are repeatable - with the application of HSI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与当前的生物识别技术相比,汗液可以更好地表示具有更辨别特征的人类身份,克服现有系统的限制,例如人口统计差异(例如,女性的准确性较低)和易受欺骗攻击。这项研究的目的是通过更丰富的信号,不仅是空间特征,而且还相关的化学成分,在不使用试剂的情况下由高光谱成像仪捕获来定义人类身份。该提案旨在通过高光谱成像(HSI)分析汗液,创建一种新的人类身份表示,这使得进一步的研究能够探索汗液作为高效,准确和安全的生物识别人类身份验证的解决方案。汗液可以通过结合生物特征的化学特性来提供对身份的细致观察。通过关注汗液作为生物识别方式的HSI视角,该项目建立了更深层次的身份特征,使真实的人与数字表示之间的联系更强,随后,系统处理它不太容易出错,更容易受到欺骗。该项目更广泛的意义和重要性是将化学汗液分析的进展与成像联系起来,为应用于汗液的HSI学习技术的推理奠定基础。 该项目的创新之处包括使用HSI创建汗液代谢物的配置文件,从而创建基于汗液的数字人类身份。为了实现这一目标,该项目的重点是确认代谢物可以从人类指尖分泌的汗液中提取,确认其重现性,并为每种感兴趣的代谢物创建HSI参考。由于感测方法的多样性,通过汗液代谢物的传统光谱学获得的光谱参考不能用作HSI参考。 该研究调查了重要的方面,例如如何获取适当的汗液样本,以及沉积样本和捕获过程是否可重复-应用HSI。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vision Paper: Hyperspectral Analysis of Finger Skin Reflectance for Resilient Biometric Systems
- DOI:10.1109/bigdata59044.2023.10386372
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Emanuela Marasco
- 通讯作者:Emanuela Marasco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuela Marasco其他文献
Demographic-Adapted ROC Curve for Assessing Automated Matching of Latent Fingerprints
用于评估潜在指纹自动匹配的人口统计 ROC 曲线
- DOI:
10.1007/s42979-022-01080-6 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Emanuela Marasco;Mengling He;Larry L Tang;S. Sriram - 通讯作者:
S. Sriram
An anti-spoofing technique using multiple textural features in fingerprint scanners
在指纹扫描仪中使用多种纹理特征的反欺骗技术
- DOI:
10.1109/bioms.2010.5610440 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Emanuela Marasco;Carlo Sansone - 通讯作者:
Carlo Sansone
Fingerphoto Presentation Attack Detection: Generalization in Smartphones
手指照片演示攻击检测:智能手机中的泛化
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Emanuela Marasco;Anudeep Vurity - 通讯作者:
Anudeep Vurity
We Are Also Metabolites: Towards Understanding the Composition of Sweat on Fingertips via Hyperspectral Imaging
我们也是代谢物:通过高光谱成像了解指尖汗液的成分
- DOI:
10.3390/digital3020010 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Emanuela Marasco;K. Ricanek;Huy Le - 通讯作者:
Huy Le
Cross-Sensor Evaluation of Textural Descriptors for Gender Prediction from Fingerprints
用于指纹性别预测的纹理描述符的跨传感器评估
- DOI:
10.1109/wacvw.2019.00017 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Emanuela Marasco;S. Cando;Larry L Tang;Elham Tabassi - 通讯作者:
Elham Tabassi
Emanuela Marasco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuela Marasco', 18)}}的其他基金
EAGER: COVID-19 Real-time Detection via Hyperspectral Analysis of Sweat Metabolite Biometrics
EAGER:通过汗液代谢物生物识别的高光谱分析进行 COVID-19 实时检测
- 批准号:
2036151 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
- 批准号:
2348177 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




