I-Corps: Personalized AI-Driven Training for Construction Workers with Non-Intrusive Measures
I-Corps:采用非侵入性措施为建筑工人提供个性化人工智能驱动培训
基本信息
- 批准号:2330278
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a software platform in combination with wearable sensors for training construction workers. Currently, construction companies rely on training programs to improve construction workers’ skills. However, traditional classroom-based training environments may not adequately prepare workers for the current challenges in the construction industry. The proposed software platform is designed to capture performance and personalize learning in non-invasive ways that may enable rethinking of the current pedagogical approach. The proposed technology provides smart training systems that observe human metrics to strengthen workplace and academic educational practices and knowledge acquisition among diverse learners. In addition, the adaptive systems may incorporate mixed reality that provide context-dependent support from multiple sources of information and include personalized tracking of the individual worker’s capabilities, work history, goals for the task, and prior performance on the task. The project is aimed at architecture, engineering, and construction worker training; however, the proposed platform may be adapted for other labor-intensive industries. This I-Corps project is based on the development of personalized artificial intelligence (AI)-driven training for construction workers that includes non-intrusive measures. The proposed technology uses the Human-Error Detection Framework that harnesses real-time psychophysiological data collected from wearable sensors (e.g., eye tracker, electroencephalogram, electrodermal activity, and photoplethysmography). The sensors are designed to measure, track, and predict workers’ performance and capabilities using the multimodal heterogeneous sensor data. Predictive models resulting from this study may contribute to significant accident reduction as well as provide a critical validation measure to confirm the effectiveness of training programs on enhancing workers' risk-analysis skills. Validated at real construction jobsites, the algorithms, classifiers, and predictive models developed by the research reveal which physiological metrics characterize training effectiveness. Since the results of this study link training proficiency to direct measures of cognitive load and attentional demands, it lays the foundation for developing personalized training environments that provide the optimum amount of challenge for each user in dynamic and hazardous workplaces such as construction. These results challenge the passivity paradigm of construction training by creating methods to boost workers’ cognitive abilities by considering their individual differences to overcome challenges on work sites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目更广泛的影响/商业潜力是开发一个结合可穿戴传感器的软件平台,用于培训建筑工人。目前,建筑公司依靠培训项目来提高建筑工人的技能。然而,传统的以课堂为基础的培训环境可能无法为工人应对当前建筑行业的挑战做好充分准备。提出的软件平台旨在以非侵入性的方式捕获性能和个性化学习,这可能使人们重新思考当前的教学方法。拟议的技术提供了智能培训系统,观察人类指标,以加强工作场所和学术教育实践以及不同学习者之间的知识获取。此外,自适应系统可以结合混合现实,从多个信息来源提供上下文相关的支持,并包括对单个工人的能力、工作历史、任务目标和任务先前表现的个性化跟踪。该项目旨在对建筑、工程和建筑工人进行培训;然而,该平台可能适用于其他劳动密集型行业。I-Corps项目基于为建筑工人开发个性化人工智能(AI)驱动的培训,其中包括非侵入性措施。提出的技术使用了人类错误检测框架,该框架利用从可穿戴传感器收集的实时心理生理数据(例如,眼动仪、脑电图、皮肤电活动和光容积脉搏波)。传感器设计用于使用多模态异构传感器数据测量、跟踪和预测工人的绩效和能力。本研究所建立的预测模型可能有助于显著减少事故,并提供关键的验证措施,以确认提高工人风险分析技能的培训计划的有效性。经过实际施工现场的验证,该研究开发的算法、分类器和预测模型揭示了哪些生理指标表征了培训的有效性。由于本研究的结果将训练熟练程度与认知负荷和注意力需求的直接测量联系起来,因此它为开发个性化的训练环境奠定了基础,为每个用户在动态和危险的工作场所(如建筑)提供最佳的挑战量。这些结果挑战了建筑培训的被动范式,通过考虑工人的个体差异来创造提高工人认知能力的方法,以克服工作现场的挑战。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Behzad Esmaeili其他文献
Pioneering Research on a Neurodiverse ADHD Workforce in the Future Construction Industry
对未来建筑行业神经多元化多动症劳动力的开创性研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Woei;Joshua Ismael Becerra;Sarah L. Karalunas;Behzad Esmaeili;Lap;Sogand Hasanzadeh - 通讯作者:
Sogand Hasanzadeh
Application of Automaticity Theory in Construction
自动化理论在施工中的应用
- DOI:
10.1061/jmenea.meeng-5794 - 发表时间:
2024 - 期刊:
- 影响因子:7.4
- 作者:
I. S. Onuchukwu;Behzad Esmaeili;S. Hélie - 通讯作者:
S. Hélie
Evaluating OSHA’s fatality and catastrophe investigation summaries: Arc flash focus
- DOI:
10.1016/j.ssci.2021.105287 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Ahmed Jalil Al-Bayati;Ghassan A. Bilal;Behzad Esmaeili;Ali Karakhan;David York - 通讯作者:
David York
Developing a winter severity index: A critical review
- DOI:
10.1016/j.coldregions.2019.02.005 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:
- 作者:
Curtis L. Walker;Sogand Hasanzadeh;Behzad Esmaeili;Mark R. Anderson;Bac Dao - 通讯作者:
Bac Dao
Situation Awareness Study in the Construction Industry: A Systematic Review
建筑业情境意识研究:系统回顾
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ching;Behzad Esmaeili - 通讯作者:
Behzad Esmaeili
Behzad Esmaeili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Behzad Esmaeili', 18)}}的其他基金
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
- 批准号:
2326937 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FW-HTF-R: Collaborative Research: Worker-AI Teaming to Enable ADHD Workforce Participation in the Construction Industry of the Future
FW-HTF-R:协作研究:工人与人工智能团队合作,使多动症劳动力参与未来的建筑行业
- 批准号:
2310210 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
- 批准号:
2049842 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FW-HTF-R: Collaborative Research: Worker-AI Teaming to Enable ADHD Workforce Participation in the Construction Industry of the Future
FW-HTF-R:协作研究:工人与人工智能团队合作,使多动症劳动力参与未来的建筑行业
- 批准号:
2128867 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Measuring Attention, Working Memory, and Visual Perception To Reduce Risk of Injuries in the Construction Industry
合作研究:测量注意力、工作记忆和视觉感知以降低建筑行业受伤风险
- 批准号:
1824238 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似海外基金
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SBIR Phase I: Artificial Intelligence (AI)-enabled Personalized Employability Curriculum (APEC)
SBIR 第一阶段:人工智能 (AI) 支持的个性化就业能力课程 (APEC)
- 批准号:
2230864 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Improving Persistence of Underserved Students in Psychological Science Using an AI-Based, Personalized Career Exploration Platform
职业:使用基于人工智能的个性化职业探索平台提高心理科学服务不足的学生的坚持力
- 批准号:
2237924 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Personalized Cancer Treatment Strategies with Systems Biology and AI
利用系统生物学和人工智能的个性化癌症治疗策略
- 批准号:
23H03494 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
PREPARE: PERSONALIZED REHABILITATION VIA NOVEL AI PATIENT STRATIFICATION STRATEGIES
准备:通过新颖的人工智能患者分层策略进行个性化康复
- 批准号:
10086219 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
EU-Funded
Improving Programming Skills of Engineering Students at Historically Black Colleges and Universities Using AI-enhanced Personalized Adaptive Learning Tools
使用人工智能增强的个性化自适应学习工具提高传统黑人学院和大学工程专业学生的编程技能
- 批准号:
2236002 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Education DCL: EAGER: Generative AI-based Personalized Cybersecurity Tutor for Fourth Industrial Revolution
教育 DCL:EAGER:第四次工业革命的基于生成人工智能的个性化网络安全导师
- 批准号:
2335046 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Building A Teacher-AI Collaborative System for Personalized Instruction and Assessment of Comprehension Skills
构建教师-AI协作系统,进行个性化教学和理解能力评估
- 批准号:
2302730 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Improving Programming Skills of Engineering Students at Historically Black Colleges and Universities Using AI-enhanced Personalized Adaptive Learning Tools
使用人工智能增强的个性化自适应学习工具提高传统黑人学院和大学工程专业学生的编程技能
- 批准号:
2235731 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RII Track-1: AI-enabled Devices for the Advancement of Personalized and Transformative Healthcare in South Carolina
RII Track-1:人工智能设备促进南卡罗来纳州个性化和变革性医疗保健的发展
- 批准号:
2242812 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Cooperative Agreement














{{item.name}}会员




