Conference: Towards a mass shooting early alert network by modeling 9-1-1 data streams
会议:通过对 9-1-1 数据流建模建立大规模枪击早期警报网络
基本信息
- 批准号:2330460
- 负责人:
- 金额:$ 6.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mass shootings are a growing problem in the United States, especially on school campuses. Emergency response to these events is often delayed due to inefficient or overburdened alert and decision-making chains. As public safety events such as mass shootings result in bursts of 9-1-1 call activity in the vicinity of the events, analysis, and modeling of patterns of such calls enabled by recent advances in artificial intelligence and spatiotemporal data mining holds significant promise for a novel intelligent notification network, capable of triggering meaningful alerts even before the information propagates through the legacy response channels. The proposed workshop will bring together experts from the public safety industry, 9-1-1 operators, regulatory bodies, computer science and AI researchers, educators, and policymakers, to jointly explore the opportunities and critical research, technical and organizational challenges, and strategies of using 9-1-1 data streams for early detection of mass casualty events. The workshop will help clarify data needs, concerns, and constraints related to the implementation of predictive analytics tools and services based on 9-1-1 call patterns and lay the groundwork for a prototype early alert system, which could be deployed in multiple jurisdictions across the United States to ensure a more efficient and timely emergency response.Building on the Next Generation 911 (NG911) standards and protocols for multi-channel and multimedia notifications, the predictive analytics models would let public safety professionals transform the nation’s 911 emergency response system, making it possible to trigger and tailor an early response to different emergencies. The workshop discussions will focus on (1) an improved data model for 9-1-1 data that would enable its efficient use in real-time public safety emergency event detection and notification; (2) initial results and challenges of spatiotemporal pattern detection in 9-1-1 and similar massive datasets, particularly from geo-fenced areas such as school perimeters; (3) preliminary results and opportunities for developing predictive models of mass shooting events using state-of-the-art AI and machine learning tools; and (4) user requirements, and technical, organizational and ethical challenges of deploying such models in operational emergency response networks in a robust, interoperable, and trustworthy manner. Achieving these goals, and outlining a comprehensive research agenda to study the critically-important multi-disciplinary problem of efficient response to mass shootings, will require a convergence of diverse cross-sectoral knowledge and expertise that has not been assimilated previouslyThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模枪击事件在美国是一个日益严重的问题,尤其是在校园里。由于警报和决策链效率低下或负担过重,对这些事件的紧急响应往往会被延迟。由于大规模枪击等公共安全事件会导致事件附近爆发 9-1-1 呼叫活动,人工智能和时空数据挖掘的最新进展对此类呼叫模式进行分析和建模,为新型智能通知网络带来了巨大希望,该网络甚至能够在信息通过传统响应渠道传播之前触发有意义的警报。拟议的研讨会将汇集来自公共安全行业、9-1-1操作员、监管机构、计算机科学和人工智能研究人员、教育工作者和政策制定者的专家,共同探讨利用9-1-1数据流及早发现大规模伤亡事件的机遇和关键研究、技术和组织挑战以及策略。该研讨会将帮助澄清与实施基于 9-1-1 呼叫模式的预测分析工具和服务相关的数据需求、关注点和限制,并为原型早期警报系统奠定基础,该系统可以部署在美国多个司法管辖区,以确保更高效、更及时的应急响应。 基于下一代 911 (NG911) 多渠道和多媒体标准和协议 通知中,预测分析模型将使公共安全专业人员能够改造国家的 911 应急响应系统,从而能够针对不同的紧急情况触发和定制早期响应。研讨会讨论将重点关注(1)改进的 9-1-1 数据数据模型,使其能够有效地用于实时公共安全紧急事件检测和通知; (2) 9-1-1 和类似海量数据集中时空模式检测的初步结果和挑战,特别是来自学校周边等地理围栏区域的时空模式检测; (3) 使用最先进的人工智能和机器学习工具开发大规模枪击事件预测模型的初步结果和机会; (4) 用户需求,以及以稳健、可互操作和值得信赖的方式在运营应急响应网络中部署此类模型的技术、组织和道德挑战。实现这些目标,并概述一个全面的研究议程,以研究有效应对大规模枪击事件的至关重要的多学科问题,将需要融合以前尚未吸收的不同跨部门知识和专业知识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Zaslavsky其他文献
Community utilization of a co-created COVID-19 testing program in a US/Mexico border community
- DOI:
10.1186/s12889-024-20527-4 - 发表时间:
2024-11-18 - 期刊:
- 影响因子:3.600
- 作者:
Breanna J. Reyes;Stephenie Tinoco Calvillo;Arleth A. Escoto;Angel Lomeli;Maria Linda Burola;Luis Gay;Ariel Cohen;Isabel Villegas;Linda Salgin;Kelli L. Cain;Dylan Pilz;Paul Watson;Bill Oswald;Cesar Arevalo;Jessica Sanchez;Marjorie Richardson;Jennifer Nelson;Pricilla Villanueva;Garrett McGaugh;Ilya Zaslavsky;Robert H. Tukey;Nicole A. Stadnick;Borsika A. Rabin;Louise C. Laurent;Marva Seifert - 通讯作者:
Marva Seifert
Service-Oriented Architecture
- DOI:
10.1007/978-3-319-17885-1_1199 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ilya Zaslavsky - 通讯作者:
Ilya Zaslavsky
Looking back and to the future of the INCF Digital Atlasing Program
INCF 数字地图计划的回顾和未来
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jyl Boline;Mike Hawrylycz;Ilya Zaslavsky;INCF Digital Atlasing Standards;Waxholm Space;and Digital Atlasing Infrastructure Task Forces - 通讯作者:
and Digital Atlasing Infrastructure Task Forces
Ilya Zaslavsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Zaslavsky', 18)}}的其他基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Evaluating COVID-19 Mitigation Strategies in Schools with a Spatially-Explicit Agent-Based Model of Infection Dynamics
使用基于空间显式代理的感染动态模型评估学校的 COVID-19 缓解策略
- 批准号:
2139740 - 财政年份:2021
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
EarthCube Building Blocks: Collaborative Proposal: EarthCube Data Discovery Hub
EarthCube 构建模块:协作提案:EarthCube 数据发现中心
- 批准号:
1639764 - 财政年份:2016
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
EarthCube IA: Collaborative Proposal: Interdisciplinary Earth Data Alliance as a Model for Integrating Earthcube Technology Resources and Engaging the Broad Community
EarthCube IA:协作提案:跨学科地球数据联盟作为整合 Earthcube 技术资源和广泛社区参与的模型
- 批准号:
1540945 - 财政年份:2015
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
EarthCube Building Blocks Collaborative Proposal: Digital Crust ? An Exploratory Environment for Earth Science Research and Learning
EarthCube 构建块协作提案:数字地壳?
- 批准号:
1440301 - 财政年份:2014
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
EAGER: Development of a Novel Online Visual Survey Data Analysis Tool and Assessment of its Capabilities to Enhance Learning of Quantitative Research Methods
EAGER:开发新型在线视觉调查数据分析工具并评估其增强定量研究方法学习的能力
- 批准号:
1443082 - 财政年份:2014
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
EarthCube Building Blocks: Community Inventory of EarthCube Resources for Geoscience Interoperability (CINERGI)
EarthCube 构建模块:用于地球科学互操作性的 EarthCube 资源社区清单 (CINERGI)
- 批准号:
1343816 - 财政年份:2013
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
EarthCube Conceptual Design: Enterprise Architecture for Transformative Research and Collaboration Across the Geosciences
EarthCube 概念设计:跨地球科学领域变革性研究与协作的企业架构
- 批准号:
1343813 - 财政年份:2013
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: The Community-Driven Big-CZ Software System for Integration and Analysis of Bio- and Geoscience Data in the Critical Zone
合作研究:SI2-SSI:社区驱动的 Big-CZ 软件系统,用于整合和分析关键区域的生物和地球科学数据
- 批准号:
1339793 - 财政年份:2013
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
EAGER: Readiness of Disciplinary Data Systems for Cross-Domain Interoperability within a Standards-Based EarthCube Reference Framework
EAGER:学科数据系统已准备好在基于标准的 EarthCube 参考框架内实现跨域互操作性
- 批准号:
1238420 - 财政年份:2012
- 资助金额:
$ 6.5万 - 项目类别:
Standard Grant
相似海外基金
Towards personalized medicine: pathophysiologic contributions to post-stroke sleep apnea
迈向个性化医疗:中风后睡眠呼吸暂停的病理生理学贡献
- 批准号:
10654941 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
Towards the Discovery of Predictive Biomarkers for Outcomes in Lupus Nephritis
致力于发现狼疮性肾炎预后的预测生物标志物
- 批准号:
491017 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
Fellowship Programs
Directed evolution towards bioengineering of fatty acid-activating natural product pathways
脂肪酸激活天然产物途径的生物工程定向进化
- 批准号:
10607101 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
A biochemical approach towards subcellular, label-free molecular imaging
亚细胞、无标记分子成像的生化方法
- 批准号:
10686627 - 财政年份:2023
- 资助金额:
$ 6.5万 - 项目类别:
Towards two decades of ocean mass and heat transports at 26.5N: Extension of the RAPID-MOCHA Array
迈向二十年 26.5N 海洋质量和热量传输:RAPID-MOCHA 阵列的扩展
- 批准号:
2148723 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Continuing Grant
Proteogenomic translator for cancer biomarker discovery towards precision medicine
用于癌症生物标志物发现和精准医学的蛋白质基因组翻译
- 批准号:
10442088 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10524783 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Integrated Nano-Opto-Fluidic System on Sapphire towards Single-Molecule Protein Sequencing
蓝宝石上的集成纳米光流控系统用于单分子蛋白质测序
- 批准号:
10473301 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10610165 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:
Proteogenomic translator for cancer biomarker discovery towards precision medicine
用于癌症生物标志物发现和精准医学的蛋白质基因组翻译
- 批准号:
10655588 - 财政年份:2022
- 资助金额:
$ 6.5万 - 项目类别:














{{item.name}}会员




