Directed evolution towards bioengineering of fatty acid-activating natural product pathways
脂肪酸激活天然产物途径的生物工程定向进化
基本信息
- 批准号:10607101
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAlkenesAnabolismArchitectureAreaBinding ProteinsBinding SitesBioinformaticsBiological ModelsBiomedical EngineeringCarrier ProteinsChimera organismChimeric ProteinsComplexDevelopmentDirected Molecular EvolutionDockingElementsEngineeringEnzymesFatty AcidsFutureGatekeepingGene ClusterGene ExpressionGenerationsGoalsHealthHomologous GeneHumanHybridsIndividualKnowledgeLengthLibrariesLigaseLinkLogicMass FragmentographyMass Spectrum AnalysisMetabolicMetabolic PathwayMetabolismMethodsModelingNatural ProductsNuclear Magnetic ResonancePathway interactionsProcessProductionPropertyProteinsPseudomonas putidaResearch ProposalsRibosomesStructureStructure-Activity RelationshipSystemTemperatureTertiary Protein StructureTherapeuticTranslationsType I Polyketide SynthaseWorkanalogbioactive natural productsexperimental studyimprovedin vivoliquid chromatography mass spectrometrymetabolic engineeringmetabolomicsnatural product derivativenovelpeptide synthasepharmacologicpolyketide synthasepreventprotein protein interactionscaffoldscreeningsecondary metaboliteyeast two hybrid system
项目摘要
SUMMARY ABSTRACT
Natural products are potently active, privileged scaffolds that form the basis of our therapeutic arsenal across
all areas of human health. The continued development of natural products and their analogs will provide access
to compounds with improved activity and pharmacological properties while decreasing off-target effects. The
bioengineering of individual biosynthetic enzymes is one method of generating such novel secondary
metabolites. However, bioengineering efforts are often stymied due to a lack of fundamental understanding of
the discrete enzymatic transformations responsible for natural product biosynthesis. Likewise, whole pathway
metabolic engineering focused on generating novel secondary metabolites with targeted structural alterations
requires detailed knowledge of individual biosynthetic steps.
Fatty acyl-AMP ligases (FAALs) are pivotal biosynthetic domains that draw fatty acids from primary
metabolism for incorporation into more complex natural product scaffolds. The FAAL domains are often linked
with multidomain polyketide synthases either in cis or trans via structural linker regions or docking domains,
respectively. We hypothesize that these linker regions and docking domains are crucial to the transfer of fatty
acid chains of specific lengths to the downstream polyketide synthase domains and that we can modulate this
transfer by maintaining the appropriate key elements. This proposal seeks to identify the key residues that control
the activation and transfer of fatty acid chains in a model system for application to more complex pathways. As
well, we seek to develop a robust heterologous host capable of producing these fatty acid-containing metabolites.
In Aim I, we will use our model system olefin (Ols) synthase to identify and modulate the gate-keeping linker
regions and docking domains that govern fatty acid integration into secondary metabolites. Directed evolution
experiments using the bacterial two-hybrid system will allow us to dissect the key docking domains found in Ols
homologs that contain a trans enzymatic structure. In a complementary system, we will perform directed
evolution experiments targeted towards the linker regions of cis Ols synthases and directly assess metabolite
production via a temperature selection screening. Aim I will uncover the key structural elements in the model Ols
synthase for future bioengineering of more complex natural product enzymes with similar biosynthetic logic.
In Aim II, we propose to develop Pseudomonas putida for the heterologous expression of fatty acid-
containing natural products. The pathways for our model Ols synthase as well as the biosynthetic gene cluster
encoding for micacocidin production will be expressed in P. putida. The production and bioengineering of the
FAAL-ACP domains to integrate acyl chains of varying length will be encoded in this heterologous host to
facilitate engineering efforts. The bioengineering of the FAAL-ACP loading modules in Ols synthase and the
micacocidin pathway will be guided by our work from Aim I.
摘要摘要
天然产品是强大的活性、特权的支架,构成了我们整个治疗库的基础
人类健康的所有领域。天然产品及其类似物的持续开发将提供
具有更好的活性和药理特性,同时减少脱靶效应的化合物。这个
个体生物合成酶的生物工程是产生这种新的次生酶的一种方法
代谢物。然而,由于缺乏对生物工程的基本了解,生物工程的努力经常受到阻碍。
负责天然产物生物合成的离散酶转化。同样,整个路径
代谢工程专注于产生具有靶向结构改变的新的次级代谢物
需要对各个生物合成步骤有详细的了解。
脂肪酰基-AMP连接酶(FAALs)是生物合成的关键结构域,从初级脂肪酸中提取脂肪酸
更复杂的天然产物支架的新陈代谢。法尔域通常是链接的
对于通过结构连接区或对接结构域在顺式或反式中的多结构域聚酮合成酶,
分别进行了分析。我们推测这些连接区域和对接结构域对于脂肪的转移是至关重要的。
将特定长度的酸链连接到下游的聚酮合成酶结构域,我们可以对此进行调节
通过维护适当的关键要素进行转移。这项提案旨在确定控制
脂肪酸链在模型系统中的激活和转移,以应用于更复杂的途径。AS
我们寻求开发一种强大的异源宿主,能够产生这些含有脂肪酸的代谢物。
在目标I中,我们将使用我们的模型系统烯烃(OLS)合成酶来识别和调节门控连接子
管理脂肪酸整合为次生代谢物的区域和对接结构域。定向进化
使用细菌双杂交系统的实验将使我们能够剖析在OLS中发现的关键对接结构域
含有反式酶结构的同系物。在一个互补的系统中,我们将执行定向
针对顺式OLS合成酶连接区的进化实验和直接评估代谢物
通过温度选择筛选进行生产。目的我将揭示OLS模型中的关键结构元素
合成酶,用于未来具有类似生物合成逻辑的更复杂的天然产物酶的生物工程。
在AIM II中,我们建议培育恶臭假单胞菌,用于异源表达脂肪酸-
含有天然产物的。我们的模型OLS合成酶以及生物合成基因簇的途径
杀菌素生产的编码将在恶臭假单胞菌中表达。红曲霉菌的生产与生物工程
整合不同长度的酰基链的Faal-ACP结构域将在该异源宿主中编码以
促进工程工作。脂肪脂肪合成酶FAAL-ACP装载模块的生物工程
杀菌素途径将由我们从AIM I开始的工作来指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Audrey Elizabeth Ynigez-Gutierrez其他文献
Audrey Elizabeth Ynigez-Gutierrez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bifunctional Catalysts for MHAT Hydrofunctionalization of Alkenes
用于烯烃 MHAT 加氢官能化的双功能催化剂
- 批准号:
2400341 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Continuing Grant
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
- 批准号:
22KJ2498 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
electrochemical dication pool: a new strategy to couple alkenes and abundant nucleophiles
电化学双阳离子池:偶联烯烃和丰富亲核试剂的新策略
- 批准号:
10635132 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Development of Remote Bismetalation Reaction of Alkenes via Chain Walking
链式行走烯烃远程双金属化反应的进展
- 批准号:
22KJ2699 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connective Stereospecific Generation of Alkenes Continued
烯烃的连接立体定向生成(续)
- 批准号:
2247031 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Standard Grant
Expanding the small molecule toolbox through novel applications of fluorinated alkenes
通过氟化烯烃的新颖应用扩展小分子工具箱
- 批准号:
10714822 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Methods for Enantioselective Spirocycle Synthesis and Radical Hydroamination of Trisubstituted Alkenes
三取代烯烃的对映选择性螺环合成和自由基氢胺化方法
- 批准号:
10785901 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Ruthenium-catalyzed hydrophosphination of alkenes
钌催化的烯烃氢膦酸化
- 批准号:
575021-2022 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
University Undergraduate Student Research Awards
New Catalytic Transformations for the Synthesis of Alkenes and Organoboron Compounds
烯烃和有机硼化合物合成的新催化转化
- 批准号:
2102231 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
Continuing Grant
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
- 批准号:
21F21334 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows