Directed evolution towards bioengineering of fatty acid-activating natural product pathways
脂肪酸激活天然产物途径的生物工程定向进化
基本信息
- 批准号:10607101
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAlkenesAnabolismArchitectureAreaBinding ProteinsBinding SitesBioinformaticsBiological ModelsBiomedical EngineeringCarrier ProteinsChimera organismChimeric ProteinsComplexDevelopmentDirected Molecular EvolutionDockingElementsEngineeringEnzymesFatty AcidsFutureGatekeepingGene ClusterGene ExpressionGenerationsGoalsHealthHomologous GeneHumanHybridsIndividualKnowledgeLengthLibrariesLigaseLinkLogicMass FragmentographyMass Spectrum AnalysisMetabolicMetabolic PathwayMetabolismMethodsModelingNatural ProductsNuclear Magnetic ResonancePathway interactionsProcessProductionPropertyProteinsPseudomonas putidaResearch ProposalsRibosomesStructureStructure-Activity RelationshipSystemTemperatureTertiary Protein StructureTherapeuticTranslationsType I Polyketide SynthaseWorkanalogbioactive natural productsexperimental studyimprovedin vivoliquid chromatography mass spectrometrymetabolic engineeringmetabolomicsnatural product derivativenovelpeptide synthasepharmacologicpolyketide synthasepreventprotein protein interactionscaffoldscreeningsecondary metaboliteyeast two hybrid system
项目摘要
SUMMARY ABSTRACT
Natural products are potently active, privileged scaffolds that form the basis of our therapeutic arsenal across
all areas of human health. The continued development of natural products and their analogs will provide access
to compounds with improved activity and pharmacological properties while decreasing off-target effects. The
bioengineering of individual biosynthetic enzymes is one method of generating such novel secondary
metabolites. However, bioengineering efforts are often stymied due to a lack of fundamental understanding of
the discrete enzymatic transformations responsible for natural product biosynthesis. Likewise, whole pathway
metabolic engineering focused on generating novel secondary metabolites with targeted structural alterations
requires detailed knowledge of individual biosynthetic steps.
Fatty acyl-AMP ligases (FAALs) are pivotal biosynthetic domains that draw fatty acids from primary
metabolism for incorporation into more complex natural product scaffolds. The FAAL domains are often linked
with multidomain polyketide synthases either in cis or trans via structural linker regions or docking domains,
respectively. We hypothesize that these linker regions and docking domains are crucial to the transfer of fatty
acid chains of specific lengths to the downstream polyketide synthase domains and that we can modulate this
transfer by maintaining the appropriate key elements. This proposal seeks to identify the key residues that control
the activation and transfer of fatty acid chains in a model system for application to more complex pathways. As
well, we seek to develop a robust heterologous host capable of producing these fatty acid-containing metabolites.
In Aim I, we will use our model system olefin (Ols) synthase to identify and modulate the gate-keeping linker
regions and docking domains that govern fatty acid integration into secondary metabolites. Directed evolution
experiments using the bacterial two-hybrid system will allow us to dissect the key docking domains found in Ols
homologs that contain a trans enzymatic structure. In a complementary system, we will perform directed
evolution experiments targeted towards the linker regions of cis Ols synthases and directly assess metabolite
production via a temperature selection screening. Aim I will uncover the key structural elements in the model Ols
synthase for future bioengineering of more complex natural product enzymes with similar biosynthetic logic.
In Aim II, we propose to develop Pseudomonas putida for the heterologous expression of fatty acid-
containing natural products. The pathways for our model Ols synthase as well as the biosynthetic gene cluster
encoding for micacocidin production will be expressed in P. putida. The production and bioengineering of the
FAAL-ACP domains to integrate acyl chains of varying length will be encoded in this heterologous host to
facilitate engineering efforts. The bioengineering of the FAAL-ACP loading modules in Ols synthase and the
micacocidin pathway will be guided by our work from Aim I.
摘要
天然产品是有效的活性,特权支架,形成了我们的治疗武器库的基础,
人类健康的所有领域。天然产品及其类似物的持续开发将提供
涉及具有改善的活性和药理学性质同时降低脱靶效应的化合物。的
单个生物合成酶的生物工程化是产生这种新的二级生物合成酶的一种方法。
代谢物。然而,生物工程的努力往往受到阻碍,由于缺乏基本的了解,
负责天然产物生物合成的离散酶促转化。同样,整个路径
代谢工程专注于产生具有靶向结构改变的新型次级代谢物
需要详细了解各个生物合成步骤。
脂肪酰基-AMP连接酶(FAALs)是从初级脂肪酸中提取脂肪酸的关键生物合成结构域,
用于掺入更复杂的天然产物支架的代谢。FAAL域通常与
对于顺式或反式的多结构域聚酮化合物脱氢酶通过结构连接区或对接结构域,
分别我们假设这些连接区和对接结构域对脂肪酸的转移至关重要。
酸链的特定长度的下游聚酮合酶结构域,我们可以调节这一点,
通过保持适当的关键要素进行转移。该提案旨在确定控制环境污染的关键残留物,
在模型系统中激活和转移脂肪酸链,以应用于更复杂的途径。作为
我们试图开发一种能够产生这些含脂肪酸代谢物的强大的异源宿主。
在目标I中,我们将使用我们的模型系统烯烃(Ols)合酶来鉴定和调节守门连接子
区域和对接域,控制脂肪酸整合到次级代谢产物中。定向进化
使用细菌双杂交系统的实验将使我们能够剖析在Ols中发现的关键对接结构域
含有反式酶结构的同系物。在互补系统中,我们将执行定向
进化实验靶向顺式OIs糖苷酶的接头区域,并直接评估代谢产物
通过温度选择筛选生产。目的我将揭示模型Ols中的关键结构元素
合成酶用于未来具有类似生物合成逻辑的更复杂天然产物酶的生物工程。
在目的II中,我们建议开发恶臭假单胞菌用于脂肪酸的异源表达-
含有天然产物。我们的模型Ols合酶的途径以及生物合成基因簇
编码米卡霉素产生的基因将在恶臭假单胞菌中表达。的生产和生物工程,
整合不同长度酰基链的FAAL-ACP结构域将在该异源宿主中编码,
促进工程工作。Ols合酶FAAL-ACP加载模块的生物工程和
micacocidin途径将由我们来自Aim I的工作指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Audrey Elizabeth Ynigez-Gutierrez其他文献
Audrey Elizabeth Ynigez-Gutierrez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bifunctional Catalysts for MHAT Hydrofunctionalization of Alkenes
用于烯烃 MHAT 加氢官能化的双功能催化剂
- 批准号:
2400341 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Continuing Grant
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
- 批准号:
22KJ2498 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
electrochemical dication pool: a new strategy to couple alkenes and abundant nucleophiles
电化学双阳离子池:偶联烯烃和丰富亲核试剂的新策略
- 批准号:
10635132 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Development of Remote Bismetalation Reaction of Alkenes via Chain Walking
链式行走烯烃远程双金属化反应的进展
- 批准号:
22KJ2699 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connective Stereospecific Generation of Alkenes Continued
烯烃的连接立体定向生成(续)
- 批准号:
2247031 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Standard Grant
Expanding the small molecule toolbox through novel applications of fluorinated alkenes
通过氟化烯烃的新颖应用扩展小分子工具箱
- 批准号:
10714822 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Methods for Enantioselective Spirocycle Synthesis and Radical Hydroamination of Trisubstituted Alkenes
三取代烯烃的对映选择性螺环合成和自由基氢胺化方法
- 批准号:
10785901 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Ruthenium-catalyzed hydrophosphination of alkenes
钌催化的烯烃氢膦酸化
- 批准号:
575021-2022 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
University Undergraduate Student Research Awards
New Catalytic Transformations for the Synthesis of Alkenes and Organoboron Compounds
烯烃和有机硼化合物合成的新催化转化
- 批准号:
2102231 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
Continuing Grant
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
- 批准号:
21F21334 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




