Understanding Molecular And Photo-Assisted Doping of Organic Electronic Materials
了解有机电子材料的分子和光辅助掺杂
基本信息
- 批准号:2330929
- 负责人:
- 金额:$ 39.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Low-cost and reliable solar energy generation is crucial for mitigating the ongoing effects of climate change and establishing a sustainable energy future. Metal-halide perovskite solar cells have emerged as disruptive contenders in the solar market due to their low-temperature processability, abundant material composition, and solution processability. However, their short device lifespan remains a major obstacle to their economic competitiveness. The charge transport layers that interface with the perovskite active layer play a critical role in both the efficiency and lifespan of these solar cells. Extensive research on charge transport layers has led to significant improvements in efficiency and lifespan, with spiro-OMeTAD being the most extensively studied due to its excellent electrical properties. However, current doping methods for spiro-OMeTAD result in detrimental byproduct formation, impeding the scalability and lifespan of perovskite solar cells. This research aims to overcome these challenges by developing a novel doping process that effectively inhibits or eliminates the formation of these byproducts. The outcomes of this study have the potential to impact various fields relying on organic semiconductors, including field-effect transistors, photovoltaics, light-emitting diodes, and organic photo-detectors. It is expected to contribute significantly to improving the performance, scalability, and stability of organic semiconductor-based devices by enhancing doping efficiency, suppressing byproduct formation, achieving uniform doping, and enabling reliable and scalable processing. Furthermore, the funding from this project will support a laboratory experience for grade 10 and 11 high school students from underrepresented communities through the Applied Research Innovations in Science and Engineering (ARISE) program at New York University, providing valuable opportunities for research on perovskite solar cells.Our group has developed a new doping method utilizing a process gas and ultraviolet light to oxidize Spiro-OMeTAD solutions containing LiTFSI. This method improves film conductivity, durability, and reduces byproduct concentration. It has demonstrated efficacy in increasing conductivity of various organic polymer species, despite significant energy level barriers. However, the design criteria for dopant composition and energetics in fully solution-processed doping schemes are unclear. This project aims to understand the underlying mechanism of molecular and photo-assisted doping of organic electronics. Integrating engineering, chemistry, and physics, it offers a novel approach to tuning the properties of organic-based electronic materials, enhancing conductivity, uniformity, and stability. Our first aim explores the effects of cationic substitution of metal-TFSI salts on reaction pathways, byproduct concentration, and optoelectronic properties of cast films. The second aim probes the impacts of light intensity, wavelength, gas species, and solvent properties on doping efficiency in conjugated polymer systems with favorable and unfavorable energy level alignments. By investigating these mechanisms and their role in optoelectronic properties, we seek to improve doping efficiency, retention, uniformity, and expand the range of available dopant species in organic semiconducting films. These advancements will significantly contribute to perovskite solar cell technology, facilitating the transition from fossil fuels to clean energy and enabling cost-effective, scalable manufacturing techniques to meet increasing demand.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低成本和可靠的太阳能发电对于减轻气候变化的持续影响和建立可持续的能源未来至关重要。金属卤化物钙钛矿太阳能电池由于其低温可加工性、丰富的材料组成和溶液可加工性而成为太阳能市场的颠覆性竞争者。然而,其设备寿命短仍然是其经济竞争力的主要障碍。与钙钛矿活性层接触的电荷传输层在这些太阳能电池的效率和寿命中起着关键作用。对电荷传输层的广泛研究已经导致效率和寿命的显着改善,其中螺-OMeCl 2由于其优异的电性能而被最广泛地研究。然而,目前用于螺-OMeO 2的掺杂方法导致有害的副产物形成,阻碍了钙钛矿太阳能电池的可扩展性和寿命。这项研究旨在通过开发一种新的掺杂工艺来克服这些挑战,该工艺可以有效地抑制或消除这些副产物的形成。这项研究的结果有可能影响依赖有机半导体的各个领域,包括场效应晶体管,光电子器件,发光二极管和有机光电探测器。它有望通过提高掺杂效率、抑制副产物形成、实现均匀掺杂以及实现可靠和可扩展的加工来显著改善基于有机半导体器件的性能、可扩展性和稳定性。此外,该项目的资金将通过纽约大学的科学与工程应用研究创新(ARISE)计划,为来自代表性不足社区的10年级和11年级高中生提供实验室体验。为钙钛矿太阳能电池的研究提供了宝贵的机会。我们的团队开发了一种新的掺杂方法,利用工艺气体和紫外光氧化螺环,含LiTFSI的OMeCl 2溶液。该方法提高了膜的导电性、耐久性,并降低了副产物浓度。尽管存在显著的能级障碍,但它已证明在增加各种有机聚合物物质的电导率方面的功效。然而,在完全溶液处理的掺杂方案中的掺杂剂组合物和能量学的设计标准尚不清楚。本项目旨在了解有机电子的分子和光辅助掺杂的基本机制。集成工程,化学和物理,它提供了一种新的方法来调整有机基电子材料的性能,提高导电性,均匀性和稳定性。我们的第一个目标是探索金属-TFSI盐的阳离子取代对反应途径、副产物浓度和流延膜的光电性质的影响。第二个目的是探讨光强度,波长,气体种类,和溶剂性质对掺杂效率的共轭聚合物系统的有利和不利的能级排列的影响。通过研究这些机制及其在光电性能中的作用,我们寻求提高掺杂效率,保留,均匀性,并扩大有机半导体薄膜中可用的掺杂剂种类的范围。这些进步将为钙钛矿太阳能电池技术做出重大贡献,促进从化石燃料向清洁能源的过渡,并实现具有成本效益的可扩展制造技术,以满足日益增长的需求。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Taylor其他文献
Andre Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Taylor', 18)}}的其他基金
I-Corps: Translation potential of Advanced Material Composites for Electromagnetic Interference Shielding
I-Corps:用于电磁干扰屏蔽的先进复合材料的转化潜力
- 批准号:
2403871 - 财政年份:2024
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
IUCRC Planning Grant New York University: Center for Decarbonizing Chemical Manufacturing Using Sustainable Electrification (DC-MUSE)
IUCRC 规划拨款 纽约大学:利用可持续电气化实现化学制造脱碳中心 (DC-MUSE)
- 批准号:
2231429 - 财政年份:2023
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
Using and Understanding Forster Resonance Energy Transfer in Organic Polymer Based Solar Cells
使用和理解有机聚合物太阳能电池中的福斯特共振能量转移
- 批准号:
1410171 - 财政年份:2014
- 资助金额:
$ 39.81万 - 项目类别:
Continuing Grant
I-Corps: An Electrochemical Desalination Cell
I-Corps:电化学脱盐电池
- 批准号:
1237241 - 财政年份:2012
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
PECASE: Nanoscale Assembly Approaches Toward High Performance Micro Fuel Cells
PECASE:实现高性能微型燃料电池的纳米级组装方法
- 批准号:
0954985 - 财政年份:2010
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
Third-Generation Solar Technologies Multidisciplinary Workshop: Synergistic Chemistry-Materials-Mathematical Sciences Approaches to Addressing Solar Energy Problems
第三代太阳能技术多学科研讨会:协同化学-材料-数学科学方法解决太阳能问题
- 批准号:
1032936 - 财政年份:2010
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
2DSPEC - Simulating two-dimensional electronic spectroscopy: Capturing the complexities of photo-induced excitedstate molecular processes
2DSPEC - 模拟二维电子光谱:捕获光诱导激发态分子过程的复杂性
- 批准号:
EP/Y037383/1 - 财政年份:2024
- 资助金额:
$ 39.81万 - 项目类别:
Fellowship
CAS-MNP: Molecular Probing Surface Reactivity Dynamics of Native versus Photo-Oxidized Microplastics and Nanoplastics in Environmental Aqueous Media
CAS-MNP:环境水介质中天然与光氧化微塑料和纳米塑料的分子探测表面反应动力学
- 批准号:
2109097 - 财政年份:2021
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
Development of photo-induced cyclization reaction toward modulation of molecular function under physiological conditions
生理条件下光诱导环化反应调节分子功能的发展
- 批准号:
21K14749 - 财政年份:2021
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Multifunctional Photo-responsive Molecular Magnets
多功能光响应分子磁体的研制
- 批准号:
21K14582 - 财政年份:2021
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultrafast response detection of photo-induced flexoelectric effect and its elucidation of molecular motion from mesoscopic viewpoint
光致挠曲电效应的超快响应检测及其从介观角度阐明分子运动
- 批准号:
20H02202 - 财政年份:2020
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical studies on photo-excitation processes of molecular ions generated in intense laser fields
强激光场中分子离子光激发过程的理论研究
- 批准号:
20J23551 - 财政年份:2020
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A real-time monitoring technique of a molecular release process from photo-sensitive drug nanocpsules
光敏药物纳米胶囊分子释放过程的实时监测技术
- 批准号:
20K05558 - 财政年份:2020
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative analysis and function development of molecular crystals with photo-triggered phase transition
光触发相变分子晶体的定量分析和功能开发
- 批准号:
19K23638 - 财政年份:2019
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of photo-functional molecular systems based on three-dimensional meso-structure control
基于三维细观结构控制的光功能分子系统的开发
- 批准号:
18H02048 - 财政年份:2018
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Photo-Degradable Molecular Glues for Photo-Control of Intracellular Protein Functions
用于光控制细胞内蛋白质功能的光降解分子胶的开发
- 批准号:
18K14353 - 财政年份:2018
- 资助金额:
$ 39.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists