Understanding the Geospace Phenomena Connected to Localized Perturbations in Earth’s Magnetic Field

了解与地球磁场局部扰动相关的地球空间现象

基本信息

  • 批准号:
    2331527
  • 负责人:
  • 金额:
    $ 57.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

During intervals of increased geomagnetic activity, increased currents in geospace can induce currents in the ground or in long, manmade conductors, such as power lines. These geomagnetically induced currents (GICs) can drive power outages and damage power components while also affecting pipelines and train systems. Developing the ability to predict GICs is important to protecting infrastructure and limiting the impact of geomagnetic storms on public safety and the economy. This project addresses GIC prediction by seeking to understand the connection between localized temporal changes in magnetic field measurements (dB/dt) and the magnetospheric and ionospheric phenomena causing them. This work will support the training of two graduate students that will be prepared to enter the STEM workforce with knowledge of space science, space weather, and machine learning and support the career of a woman PI leading the project. This project is jointly funded by the Magnetospheric Physics program, the Established Program to Stimulate Competitive Research (EPSCoR), and the Aeronomy program.Several studies have shown that peaks in dB/dt can be very localized, on the scales of hundreds of km. Thus, forecasting is needed at a localized level to provide power companies with actionable warnings. The current physics-based models used by the Space Weather Prediction Center lack the resolution needed to include physical phenomena at the spatial scales of the dB/dt peaks. Higher resolution models are being used for scientific studies, but are computationally expensive and take longer to run, making them more challenging to use for timely forecasting. An advantage of machine learning (ML) models is that once trained, the runtime to make predictions is significantly lower than physics based direct modeling. ML networks’ ability to model nonlinear relationships in datasets can allow us to better understand the phenomena that result in localized dB/dt through the use of model explainability techniques. The following science questions will be addressed: (1) What are the spatial characteristics of localized magnetic perturbations? (2) What magnetosphere and ionosphere phenomena correlate with localized magnetic perturbations and why? The first question will be tackled using two methods that take advantage of the NSF-funded SuperMAG database: by characterizing the Region to Specific Difference (a parameter that compares the value at one location to the average values within a defined region) and by interpolation with spherical elementary current systems, and then comparing the results. The second question will utilize explainable machine learning techniques to explore magnetosphere and ionosphere phenomena that correlate with the spatially localized perturbations, incorporating datasets from satellites (e.g., DMSP, AMPERE, TWINS, and THEMIS). The results of this work will improve our understanding of geomagnetically active intervals, magnetosphere-ionosphere coupling, and the causes of localized perturbations in the ground magnetic field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在地磁活动增加的间隔期间,地球空间中增加的电流可以在地面或长的人造导体(如电力线)中感应电流。这些地磁感应电流(GIC)会导致停电并损坏电力组件,同时也会影响管道和列车系统。发展预测GIC的能力对于保护基础设施和限制地磁暴对公共安全和经济的影响非常重要。该项目通过设法了解磁场测量中的局部时间变化(dB/dt)与引起这些变化的磁层和电离层现象之间的联系,解决GIC预测问题。这项工作将支持两名研究生的培训,他们将准备进入STEM劳动力队伍,掌握空间科学,空间天气和机器学习的知识,并支持领导该项目的女性PI的职业生涯。该项目由磁层物理计划、激励竞争研究既定计划(EPSCoR)和高层大气计划共同资助。几项研究表明,dB/dt峰值可以非常局部化,在数百公里的尺度上。因此,需要在本地级别上进行预测,以便为电力公司提供可操作的警告。空间天气预报中心目前使用的基于物理的模型缺乏所需的分辨率,无法将dB/dt峰值空间尺度上的物理现象包括在内。更高分辨率的模型正在用于科学研究,但计算成本高昂,运行时间更长,这使得它们更难以用于及时预测。机器学习(ML)模型的一个优点是,一旦经过训练,进行预测的运行时间明显低于基于物理的直接建模。ML网络在数据集中建模非线性关系的能力可以让我们通过使用模型可解释性技术更好地理解导致局部dB/dt的现象。本研究将探讨以下科学问题:(1)局部磁扰动的空间特征是什么?(2)什么磁层和电离层现象与局部磁扰动相关,为什么?第一个问题将使用两种方法来解决,这些方法利用了NSF资助的SuperMAG数据库:通过表征区域与特定差异(将一个位置的值与定义区域内的平均值进行比较的参数)以及通过球面基本电流系统进行插值,然后比较结果。第二个问题将利用可解释的机器学习技术来探索与空间局部扰动相关的磁层和电离层现象,并结合来自卫星的数据集(例如,DMSP、AMPERE、THEMIS和THEMIS)。这项工作的结果将提高我们对地磁活动间隔、磁层-电离层耦合以及地面磁场局部扰动原因的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Keesee其他文献

Amy Keesee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Keesee', 18)}}的其他基金

Collaborative Research: GEM: Understanding Connections between Earth’s Magnetotail and Ionosphere through Imaging
合作研究:GEM:通过成像了解地球磁尾和电离层之间的联系
  • 批准号:
    2109543
  • 财政年份:
    2021
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Standard Grant
Ion Heating in the Magnetotail: Understanding Geomagnetic Storms
磁尾中的离子加热:了解地磁风暴
  • 批准号:
    1113478
  • 财政年份:
    2012
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
美国研究生 NSF 东亚暑期学院
  • 批准号:
    0413018
  • 财政年份:
    2004
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Fellowship Award

相似海外基金

FDSS Track 1: A New Paradigm for Faculty Development in Geospace Science at Georgia Tech
FDSS Track 1:佐治亚理工学院地球空间科学教师发展的新范式
  • 批准号:
    2347873
  • 财政年份:
    2024
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Continuing Grant
Solar Eclipse Workshop: Observations of April 2024 Total Solar Eclipse and Community Discussion of Multi-Scale Coupling in Geospace Environment; Arlington, Texas; April 8-10, 2024
日食研讨会:2024年4月日全食观测及地球空间环境多尺度耦合的社区讨论;
  • 批准号:
    2415082
  • 财政年份:
    2024
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Standard Grant
Conference: GEOSCOPR Workshop - Geospace Exploration and Observation with Scientific COllaboration in Polar Regions, towards IPY 2032
会议:GEOSCOPR 研讨会 - 极地地区的地球空间探索和观测与科学合作,迈向 IPY 2032
  • 批准号:
    2333163
  • 财政年份:
    2023
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Towards Developing Physics-informed Subgrid Models for Geospace MagnetoHydroDynamics (MHD) Simulations
合作研究:GEM——开发用于地球空间磁流体动力学 (MHD) 模拟的物理信息子网格模型
  • 批准号:
    2247678
  • 财政年份:
    2023
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Towards Developing Physics-informed Subgrid Models for Geospace MagnetoHydroDynamics (MHD) Simulations
合作研究:GEM——开发用于地球空间磁流体动力学 (MHD) 模拟的物理信息子网格模型
  • 批准号:
    2247677
  • 财政年份:
    2023
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Standard Grant
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2149781
  • 财政年份:
    2022
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2305408
  • 财政年份:
    2022
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Continuing Grant
International joint research of geospace variability by combining multi-point ground and satellite observations and modeling
通过多点地面和卫星观测与建模相结合的地球空间变异性国际联合研究
  • 批准号:
    22K21345
  • 财政年份:
    2022
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2149779
  • 财政年份:
    2022
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2149780
  • 财政年份:
    2022
  • 资助金额:
    $ 57.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了