PRIMES: Practical Inference Algorithms to Detect Hybridization
PRIMES:检测杂交的实用推理算法
基本信息
- 批准号:2331660
- 负责人:
- 金额:$ 27.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Phylogenetics is the branch of evolutionary biology whose main objective is understanding the evolutionary relationships between species. Inferring such relations is crucial for important areas of current concern, such as conservation efforts, understanding infectious disease dynamics, and improving agricultural practices. Hybrid speciation, or hybridization, occurs when two distinct species merge genetically to create a new one, and it is known to have played an important role in the evolution of many species, including butterflies, salamanders, sunflowers, and primroses, among many others. In this project, the Principal Investigator will develop much-needed algorithms to be used by the biological community as a tool to detect hybridization between species. Additionally, the PI will design and conduct multiple activities to encourage aspiring scholars, especially those belonging to minority groups, to pursue a career in STEM. The theoretical foundation of the algorithms that will be developed in this proposal will be the Network Multispecies Coalescent model (NMSC), a standard stochastic model describing the distinct evolutionary relationships between species’ genes in the presence of incomplete lineage sorting and hybridization. Current statistically consistent methods to infer species networks under the NMSC are restricted to a rather simple family of networks known as level-1. The PI will develop and implement fast and consistent algorithms to infer more general species networks under the NMSC from genomic data. This will be achieved with three aims: (1) Expand current identifiability results to a more general family of networks; (2) Develop algorithms to infer statistically consistent estimators of species networks; and (3) Implement algorithms that are useful, reliable, and easy to use. Software implementations will handle large datasets under attainable running times, be made publicly available, and include extensive novel functionalities that will be widely useful to the biological community. This work will advance both theoretical and practical methods for phylogenetic inference. To increase underrepresented groups’ participation in biomathematics, the PI will organize and host a seminar series entitled “Biomathematics for All: Celebrating Diversity.” In these lectures, invited speakers will discuss their research together with the challenges and opportunities they have faced. Furthermore, the PI will design and conduct the summer week-long program “Introduction to the Mathematical Modeling of Evolution: A Week-long Course for Beginners” for the diverse student community of California State University San Bernardino, a minority-serving institution. The PI will attend the Fall 2024 semester program: “Theory, Methods, and Applications of Quantitative Phylogenomics” at ICERM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
系统遗传学是进化生物学的一个分支,其主要目的是了解物种之间的进化关系。推断这种关系对于当前关注的重要领域至关重要,例如保护工作、了解传染病动态和改进农业做法。当两个不同的物种在基因上融合产生一个新的物种时,杂交物种形成或杂交就会发生。众所周知,它在许多物种的进化中发挥了重要作用,包括蝴蝶、蝾螈、向日葵和报春花等。在这个项目中,首席研究员将开发生物群落急需的算法,作为检测物种间杂交的工具。此外,PI将设计并开展多项活动,鼓励有抱负的学者,特别是少数群体的学者,在STEM领域从事职业。本提案将开发的算法的理论基础将是网络多物种合并模型(NMSC),这是一个标准的随机模型,描述了存在不完全谱系分选和杂交的情况下物种基因之间独特的进化关系。目前统计上一致的推断NMSC下物种网络的方法仅限于一个相当简单的网络家族,称为1级。PI将开发和实施快速和一致的算法,从基因组数据推断出NMSC下更一般的物种网络。这将通过三个目标来实现:(1)将当前的可识别性结果扩展到更一般的网络家族;(2)开发算法来推断物种网络的统计一致性估计;(3)实现有用、可靠和易于使用的算法。软件实现将在可实现的运行时间内处理大型数据集,使其公开可用,并包括广泛的新功能,这些功能将对生物界广泛有用。这项工作将推进系统发育推断的理论和实践方法。为了增加代表性不足的群体对生物数学的参与,PI将组织和主办一个名为“全民生物数学:庆祝多样性”的系列研讨会。在这些讲座中,特邀讲者将讨论他们的研究以及他们所面临的挑战和机遇。此外,PI将为加州州立大学圣贝纳迪诺分校(一所少数族裔服务机构)的多元化学生群体设计并开展为期一周的暑期课程“进化数学建模入门:为期一周的初学者课程”。PI将参加ICERM的2024年秋季学期课程:“定量系统基因组学的理论,方法和应用”。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hector Banos Cervantes其他文献
Hector Banos Cervantes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 27.43万 - 项目类别:
Continuing Grant
SHF:Small:Making Effect Systems Practical with Polymorphism, Inference, and Prototyping Support
SHF:Small:通过多态性、推理和原型支持使效果系统变得实用
- 批准号:
2007582 - 财政年份:2020
- 资助金额:
$ 27.43万 - 项目类别:
Standard Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
1752614 - 财政年份:2018
- 资助金额:
$ 27.43万 - 项目类别:
Continuing Grant
Practical bayesian network inference
实用贝叶斯网络推理
- 批准号:
356052-2008 - 财政年份:2012
- 资助金额:
$ 27.43万 - 项目类别:
Discovery Grants Program - Individual
Practical bayesian network inference
实用贝叶斯网络推理
- 批准号:
356052-2008 - 财政年份:2011
- 资助金额:
$ 27.43万 - 项目类别:
Discovery Grants Program - Individual
III: Small: RUI: Practical Inference on Real-World Networks of Data
III:小:RUI:现实世界数据网络的实际推理
- 批准号:
1116439 - 财政年份:2011
- 资助金额:
$ 27.43万 - 项目类别:
Interagency Agreement
Modern Bayesian network inference and its practical applicaitons in probabilistic expert systems
现代贝叶斯网络推理及其在概率专家系统中的实际应用
- 批准号:
238880-2006 - 财政年份:2010
- 资助金额:
$ 27.43万 - 项目类别:
Discovery Grants Program - Individual
Practical bayesian network inference
实用贝叶斯网络推理
- 批准号:
356052-2008 - 财政年份:2010
- 资助金额:
$ 27.43万 - 项目类别:
Discovery Grants Program - Individual
Practical bayesian network inference
实用贝叶斯网络推理
- 批准号:
356052-2008 - 财政年份:2009
- 资助金额:
$ 27.43万 - 项目类别:
Discovery Grants Program - Individual
Improvement of practical inference using statistical resampling method and higher order asymptotic theory
使用统计重采样方法和高阶渐近理论改进实际推理
- 批准号:
21650065 - 财政年份:2009
- 资助金额:
$ 27.43万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research