Conference: Wasatch Topology Conference

会议:沃萨奇拓扑会议

基本信息

  • 批准号:
    2332419
  • 负责人:
  • 金额:
    $ 4.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This award will provide funding for the next three iterations of the long-standing Wasatch Topology Conference, which will be held in October of 2023 at the University of Utah, and August of 2024 and 2025 in Park City, Utah. Each conference will be held over 2-3 days, and will include research talks by leading mathematicians in geometry, topology, and dynamics. The conferences will cover a broad range of topics, include a diverse list of speakers and participants, and highlight the work of early career mathematicians. The Wasatch Topology Conference will advance knowledge in the field by providing a venue for the transfer of knowledge from experts to a wider audience. Research opportunities are also created through interactions between all conference participants and graduate students via their lightning talks. Conference topics include low dimensional topology, geometric topology, dynamics, and geometric group theory, and within these areas, cover the broadest range of subjects. There is a concerted effort on the organizers' part in recruiting mathematicians to discuss their research related to significant and groundbreaking results. These conferences will serve as a venue to highlight new and hot topics in the research areas. In addition, the organizers are fully committed to diversity and inclusion in the selection of speakers and participants. and are deeply committed to the future recruitment of individuals marginalized along different axes including, but not limited to, race, gender, age, disability status, and socioeconomic status. A diverse pool of speaker-participants and participants will help to continue to foster diversity and inclusion within this subfield of mathematics and help to retain early career mathematicians marginalized along similar and other axes. The website for the Wasatch Topology Conference is https://www.math.utah.edu/wtc/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为长期Wasatch拓扑会议的下三次迭代提供资金,该会议将于2023年10月在犹他州大学举行,并于2024年8月和2025年8月在犹他州帕克城举行。每次会议将举行2-3天,并将包括研究会谈的领先数学家在几何,拓扑和动力学。会议将涵盖广泛的主题,包括不同的发言者和与会者名单,并突出了早期职业数学家的工作。Wasatch拓扑会议将通过为专家向更广泛的受众转移知识提供场所来促进该领域的知识。研究机会也通过所有会议参与者和研究生之间的互动,通过他们的闪电会谈创建。会议主题包括低维拓扑,几何拓扑,动力学和几何群论,并在这些领域,涵盖了最广泛的主题。组织者在招募数学家讨论他们与重大和开创性成果有关的研究方面做出了一致努力。这些会议将作为一个场所,以突出新的和热门的研究领域的主题。此外,组织者在选择发言者和与会者时充分致力于多样性和包容性。并坚定地致力于未来招募沿着不同轴线被边缘化的个人,这些轴线包括但不限于种族、性别、年龄、残疾状况和社会经济状况。一个多样化的演讲者和参与者将有助于继续促进数学这一子领域的多样性和包容性,并有助于留住沿着类似和其他轴线被边缘化的早期职业数学家。Wasatch拓扑会议的网站是https://www.math.utah.edu/wtc/.This奖,反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priyam Patel其他文献

Isometry groups of infinite-genus hyperbolic surfaces
无限亏格双曲曲面的等距群
  • DOI:
    10.1007/s00208-021-02164-z
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Tarik Aougab;Priyam Patel;N. Vlamis
  • 通讯作者:
    N. Vlamis
Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in<em>-</em>silico-based analysis to cognize the mechanism of aggregation
  • DOI:
    10.1016/j.gdata.2016.01.003
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pritam Kumar Panda;Abhaysinha Satish Patil;Priyam Patel;Hetalkumar Panchal
  • 通讯作者:
    Hetalkumar Panchal
Residual finiteness growths of virtually special groups
几乎特殊群的剩余有限增长
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Bou;M. Hagen;Priyam Patel
  • 通讯作者:
    Priyam Patel
Proton conduction in inkjet-printed reflectin films
喷墨印刷反射膜中的质子传导
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujia Lu;Preeta Pratakshya;Atrouli Chatterjee;X. Jia;David D. Ordinario;Long Phan;J. A. Cerna Sanchez;Rylan Kautz;Vivek Tyagi;Priyam Patel;Yegor Van Dyke;MyAnh Kaylee Dao;Justin P. Kerr;J. Long;Alex Allevato;Jessica E. Leal;E. Tseng;Ethan R. Peng;A. Reuter;Justin Couvrette;Samantha Drake;F. Omenetto;A. Gorodetsky
  • 通讯作者:
    A. Gorodetsky
Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in-silico-based analysis to cognize the mechanism of aggregation
基于突变的β淀粉样蛋白肽(1-42)的结构修饰和动力学研究:基于计算机的分析来认识聚集机制
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Panda;A. S. Patil;Priyam Patel;Hetalkumar Panchal
  • 通讯作者:
    Hetalkumar Panchal

Priyam Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Priyam Patel', 18)}}的其他基金

CAREER: The Algebra, Geometry, and Topology of Infinite Surfaces
职业:无限曲面的代数、几何和拓扑
  • 批准号:
    2046889
  • 财政年份:
    2021
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Continuing Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
  • 批准号:
    1937969
  • 财政年份:
    2019
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Standard Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
  • 批准号:
    1812014
  • 财政年份:
    2018
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Standard Grant

相似海外基金

RAPID: Investigating spatiotemporal groundwater variations in the Wasatch Front using geophysical methods
RAPID:使用地球物理方法研究瓦萨奇锋面的时空地下水变化
  • 批准号:
    2330162
  • 财政年份:
    2023
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Standard Grant
Research Data Centers: Wasatch Front Research Data Center
研究数据中心:瓦萨奇前沿研究数据中心
  • 批准号:
    1800563
  • 财政年份:
    2018
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Standard Grant
Conference Proposal: Wasatch Topology Conference
会议提案:Wasatch 拓扑会议
  • 批准号:
    1822255
  • 财政年份:
    2018
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Continuing Grant
Conference Proposal: Wasatch Topology Conference, August 2014
会议提案:Wasatch 拓扑会议,2014 年 8 月
  • 批准号:
    1405686
  • 财政年份:
    2014
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Standard Grant
Collaborative Research: The Wasatch Hydrometeor Aggregation and Riming Experiment
合作研究:瓦萨奇水凝物聚集和沸腾实验
  • 批准号:
    1127692
  • 财政年份:
    2011
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: The Wasatch Hydrometeor Aggregation and Riming Experiment
合作研究:瓦萨奇水凝物聚集和沸腾实验
  • 批准号:
    1127759
  • 财政年份:
    2011
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Continuing Grant
Wasatch Topology Conference
沃萨奇拓扑会议
  • 批准号:
    1104805
  • 财政年份:
    2011
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Standard Grant
Orographic Precipitation Processes over the Wasatch Mountains during the Intermountain Precipitation Experiment (IPEX)
山间降水实验(IPEX)期间瓦萨奇山脉的地形降水过程
  • 批准号:
    0085318
  • 财政年份:
    2001
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Continuing Grant
Modeling the Viscoelastiodynamic Response of the Wasatch Mountains, Salt Lake Basin and Mountaindale Dam, Utah
模拟犹他州沃萨奇山脉、盐湖盆地和芒廷代尔大坝的粘弹动力响应
  • 批准号:
    9303796
  • 财政年份:
    1993
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Continuing Grant
Seismic Code Decisions Under Risk: A Model Analysis for the Wasatch Front
面临风险的地震规范决策:瓦萨奇锋面的模型分析
  • 批准号:
    8820148
  • 财政年份:
    1989
  • 资助金额:
    $ 4.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了