CAREER: The Algebra, Geometry, and Topology of Infinite Surfaces
职业:无限曲面的代数、几何和拓扑
基本信息
- 批准号:2046889
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This mathematics research project focuses on questions in geometry and topology, both of which are concerned with the study of the shapes of objects. The project studies the properties of surfaces, which fall into two categories: finite-type and infinite-type. The theory of finite-type surfaces has been historically more developed than that of infinite-type surfaces, partly because there is a simple classification of all finite-type surfaces. The primary goal of the research project is to significantly deepen understanding of infinite-type surfaces, which are ubiquitous in topology, geometry, and dynamics. The first part is aimed at characterizing their geometric symmetries (isometry groups). The second and third parts concern their topological symmetries (mapping class groups), with the long-term goal of completely classifying the different types of topological symmetries. The educational component of this project consists of three parts. The first part is a research training and professional development graduate student workshop for members of groups underrepresented in algebra, geometry, topology, and number theory. This workshop is aimed at early-career graduate students and intended to serve as a bridge between successful programs like the EDGE summer program and research-focused workshops for advanced graduate students. One of the goals is to support the participants in their transition between coursework and research-based mathematics. The second part of the educational component is the expansion of an existing high school outreach program in Salt Lake City that will serve students from the most diverse districts of the city. The third part is a speaker series featuring prominent individuals from groups underrepresented in STEM. The research focus of this project is on infinite-type surfaces and their groups of symmetries. Infinite-type surfaces arise naturally in many contexts, such as in the study of group actions on the plane, and are intimately related to the study of quasiconformal maps. The first part of this project, aimed at characterizing isometry groups of infinite-type surfaces, is inspired by Felix Klein's suggestion from 1872 that groups of geometric symmetries be used to better understand the geometry of Riemann surfaces. The results regarding isometry groups are used in-turn to produce algebraic invariants of the mapping class group. This group can be thought of as the group of topological symmetries of the surface and is the focus of the second and third parts of the project. In particular, the second part is aimed at producing algebraic invariants of the mapping class groups of infinite-type surfaces via subgroup constructions, and the third part focuses on using the actions of mapping class groups on hyperbolic graphs to produce a Nielsen-Thurston type classification for these surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个数学研究项目的重点是几何和拓扑学的问题,这两个问题都与物体形状的研究有关。该项目研究曲面的性质,曲面分为两类:有限型和无限型。有限型曲面的理论在历史上比无限型曲面更发达,部分原因是所有有限型曲面都有一个简单的分类。该研究项目的主要目标是显著加深对无限型表面的理解,这些表面在拓扑学,几何学和动力学中无处不在。第一部分旨在描述它们的几何对称性(等距群)。第二部分和第三部分关注它们的拓扑对称性(映射类群),长期目标是完全分类不同类型的拓扑对称性。 该项目的教育部分包括三个部分。第一部分是一个研究培训和专业发展的研究生研讨会的成员代表团体在代数,几何,拓扑和数论。这个研讨会是针对早期职业生涯的研究生,并打算作为成功的方案之间的桥梁,如边缘夏季计划和研究为重点的研讨会先进的研究生。目标之一是支持参与者在课程和基于研究的数学之间的过渡。教育部分的第二部分是扩大湖城现有的高中外展计划,该计划将为来自该市最多样化地区的学生提供服务。第三部分是一个演讲者系列,其中包括来自STEM代表性不足的群体的杰出人士。该项目的研究重点是无限型曲面及其对称群。无限型曲面在许多情况下自然出现,例如在平面上的群作用的研究中,并且与拟共形映射的研究密切相关。这个项目的第一部分,旨在表征等距群的无限型表面,灵感来自菲利克斯克莱因的建议,从1872年的几何对称群被用来更好地理解几何的黎曼曲面。关于等距群的结果反过来用于产生映射类群的代数不变量。这个群可以被认为是曲面的拓扑对称群,也是项目第二和第三部分的重点。特别地,第二部分旨在通过子群构造产生无限型曲面的映射类群的代数不变量,第三部分着重于利用映射类群在双曲图上的作用来产生一个Nielsen-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估而被认为值得支持和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Priyam Patel其他文献
Isometry groups of infinite-genus hyperbolic surfaces
无限亏格双曲曲面的等距群
- DOI:
10.1007/s00208-021-02164-z - 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Tarik Aougab;Priyam Patel;N. Vlamis - 通讯作者:
N. Vlamis
Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in<em>-</em>silico-based analysis to cognize the mechanism of aggregation
- DOI:
10.1016/j.gdata.2016.01.003 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Pritam Kumar Panda;Abhaysinha Satish Patil;Priyam Patel;Hetalkumar Panchal - 通讯作者:
Hetalkumar Panchal
Residual finiteness growths of virtually special groups
几乎特殊群的剩余有限增长
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Bou;M. Hagen;Priyam Patel - 通讯作者:
Priyam Patel
Proton conduction in inkjet-printed reflectin films
喷墨印刷反射膜中的质子传导
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yujia Lu;Preeta Pratakshya;Atrouli Chatterjee;X. Jia;David D. Ordinario;Long Phan;J. A. Cerna Sanchez;Rylan Kautz;Vivek Tyagi;Priyam Patel;Yegor Van Dyke;MyAnh Kaylee Dao;Justin P. Kerr;J. Long;Alex Allevato;Jessica E. Leal;E. Tseng;Ethan R. Peng;A. Reuter;Justin Couvrette;Samantha Drake;F. Omenetto;A. Gorodetsky - 通讯作者:
A. Gorodetsky
Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in-silico-based analysis to cognize the mechanism of aggregation
基于突变的β淀粉样蛋白肽(1-42)的结构修饰和动力学研究:基于计算机的分析来认识聚集机制
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Panda;A. S. Patil;Priyam Patel;Hetalkumar Panchal - 通讯作者:
Hetalkumar Panchal
Priyam Patel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Priyam Patel', 18)}}的其他基金
Conference: Wasatch Topology Conference
会议:沃萨奇拓扑会议
- 批准号:
2332419 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
- 批准号:
1937969 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
The Covers, Symmetries, and Combinatorics of Manifolds
流形的覆盖、对称性和组合学
- 批准号:
1812014 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302263 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
- 批准号:
2302373 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant