EAGER: CAS: From polymer mixtures to sustainable foams with controlled hierarchical porosity and mechanics
EAGER:CAS:从聚合物混合物到具有受控分级孔隙率和力学性能的可持续泡沫
基本信息
- 批准号:2332640
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYPlastics play a crucial role in society, but their environmental impacts, from petroleum-based sourcing to end-of-life disposal, raise significant concerns. Foam applications, in particular, present challenges due to non-renewable and toxic building blocks, as well as non-recyclability, and non-degradability of the resulting polymer foams. Current sustainable foam approaches involve reassembling useful polymer building blocks extracted from biomass. Yet, these approaches lead to waste and suffer from scalability limitations. This project introduces the novel and potentially transformative concept of synthesizing foams directly from polymer mixtures obtained from unprocessed renewable feedstocks, thus eliminating the need for extraction. By studying polymer interactions and foaming mechanisms, precise control over structure and properties can be achieved. If successful, this project will produce foams that exhibit similar processability and mechanical properties as petroleum-derived counterparts, while also offering the advantages of degradability and recyclability, pushing the boundaries of truly sustainable polymer foams. The knowledge gained will extend to other polymer mixtures with similar molecular features, expanding the impacts beyond biomass-based polymer mixtures. The findings and methodologies will be integrated into materials processing and polymer science curricula, as well as public outreach activities. The project will train students in sustainable polymer science/engineering principles, fostering and educating environmentally conscious materials professionals. TECHNICAL SUMMARYIn the context of foam applications, achieving precise control over the molecular composition and hierarchical structure in conventional polymers, such as polyurethanes and polystyrenes, has played a pivotal role in their widespread utilization across various industries. However, a significant challenge arises from the fact that these widely used polymers are derived from non-renewable and toxic monomers, and result in foams that are non-recyclable and non-degradable. Sustainable alternatives involve synthesizing monomers from biomass-derived small molecules or extracting polymers from biomass and reassembling them into foams. However, these approaches necessitate extraction processes, leading to waste generation and scalability limitations, and they don’t necessarily lead to degradable or recyclable foams. To overcome these challenges, this project presents a novel approach that eliminates the need for extraction processes and instead utilizes the inherent polymer mixtures present in renewable feedstocks. The objective is to prepare hierarchical polymeric foams with controlled structure and mechanical properties directly from polymer mixtures found in unprocessed biomass. The central hypothesis is that by harnessing charge complexation and thermomechanical processing, precise control over the hierarchical structure, porosity, and mechanical properties of the foams can be achieved. Abundant algal biomass will be used as a renewable polymer feedstock to validate this approach. The analysis will encompass evaluating foam structure, porosity, pore morphology, and mechanical properties, to establish structure-property relationships. Additionally, studies will be conducted on recyclability and degradation in soil. The outcomes of this research will advance sustainable foam manufacturing processes, enabling the production of high-performance, degradable, and recyclable foams from renewable polymers. The knowledge gained will extend beyond biomass-based polymers, contributing to a broader understanding of other polymer mixtures with similar molecular characteristics. Furthermore, the materials investigated in this proposal will be integrated into teaching, education, and outreach activities..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
塑料在社会中发挥着至关重要的作用,但其对环境的影响,从基于石油的采购到报废处理,引起了人们的严重关注。特别是泡沫应用,由于不可再生和有毒的结构单元,以及所得聚合物泡沫的不可回收性和不可降解性而提出了挑战。目前的可持续泡沫方法涉及重新组装从生物质中提取的有用聚合物构件。然而,这些方法导致浪费并受到可扩展性限制。该项目介绍了一种新的和潜在的变革性概念,即直接从未加工的可再生原料中获得的聚合物混合物合成泡沫,从而消除了提取的需要。通过研究聚合物相互作用和发泡机理,可以实现对结构和性能的精确控制。如果成功,该项目将生产出与石油衍生产品具有相似加工性能和机械性能的泡沫,同时还具有可降解性和可回收性的优势,推动真正可持续的聚合物泡沫的界限。所获得的知识将扩展到具有类似分子特征的其他聚合物混合物,将影响扩展到生物质聚合物混合物之外。研究结果和方法将纳入材料加工和聚合物科学课程以及公共宣传活动。该项目将培训学生可持续聚合物科学/工程原理,培养和教育具有环保意识的材料专业人员。技术概述在泡沫应用中,实现对常规聚合物如聚氨酯和聚苯乙烯的分子组成和分级结构的精确控制,在它们在各种工业中的广泛应用中发挥了关键作用。然而,这些广泛使用的聚合物衍生自不可再生且有毒的单体,并且导致不可回收和不可降解的泡沫,这一事实带来了重大挑战。可持续的替代品包括从生物质衍生的小分子中合成单体,或从生物质中提取聚合物并将其重新组装成泡沫。然而,这些方法需要提取过程,导致废物产生和可扩展性限制,并且它们不一定导致可降解或可回收的泡沫。为了克服这些挑战,该项目提出了一种新的方法,消除了对提取过程的需要,而是利用可再生原料中固有的聚合物混合物。目的是直接从未加工的生物质中发现的聚合物混合物制备具有受控结构和机械性能的分层聚合物泡沫。中心假设是,通过利用电荷络合和热机械加工,可以实现对泡沫的分级结构、孔隙率和机械性能的精确控制。丰富的藻类生物质将被用作可再生聚合物原料,以验证这种方法。分析将包括评估泡沫结构、孔隙率、孔形态和机械性能,以建立结构-性能关系。此外,还将对土壤中的可再循环性和降解性进行研究。这项研究的成果将推动可持续的泡沫制造工艺,使可再生聚合物能够生产高性能,可降解和可回收的泡沫。所获得的知识将超越生物质聚合物,有助于更广泛地了解具有类似分子特征的其他聚合物混合物。此外,本提案中研究的材料将融入教学、教育和外展活动中。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleftheria Roumeli其他文献
The role of biomolecular building blocks on the cohesion of biomatter plastics
生物分子结构单元对生物基塑料内聚性的作用
- DOI:
10.1016/j.matt.2024.101941 - 发表时间:
2025-03-05 - 期刊:
- 影响因子:17.500
- 作者:
Ian R. Campbell;Ziyue Dong;Paul Grandgeorge;Andrew M. Jimenez;Emily R. Rhodes;Ella Lee;Scott Edmundson;Chinmayee V. Subban;Kayla G. Sprenger;Eleftheria Roumeli - 通讯作者:
Eleftheria Roumeli
Eleftheria Roumeli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleftheria Roumeli', 18)}}的其他基金
DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
- 批准号:
2323976 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
“重组型”CRISPR/Cas12a系统的核酸分子可视化原位检测技术研究
- 批准号:JCZRYB202501007
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
探索通过LNP递送靶向TTR基因的CRISPR-Cas编辑器治疗遗传型转甲状腺素蛋白淀粉样的策略
- 批准号:HDMZ25H020001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
类器官结合CRISPR-Cas9筛选:探究GPCR调控滋养层分化及其对先兆子痫的影响研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
不对称RPA联合CRISPR/Cas12的一步法内禀机制解析及方法建立
- 批准号:MS25C200074
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CRISPR插删突变介导的Cas9定向进化新技术建立
- 批准号:Z25H160016
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于CRISPR/Cas9编辑人肝类器官抗纤维化小分子化合物高通量筛选及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于CRISPR-Cas系统的核酸分子检测研究
- 批准号:2025JJ20018
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于CRISPR/Cas13快速联合检测呼吸道RNA病毒的研究与应用
- 批准号:2025JJ90207
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于核酸构象重编程与CRISPR/Cas12a的结核分枝杆菌高灵敏检测研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
噬菌体介导的CRISPR/Cas12a协同剪切平台用于多重活细菌的同时检测
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
- 批准号:
2338206 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
- 批准号:
2411680 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAS: Reductive Functionalization of Carbon Dioxide with Light Olefins
CAS:二氧化碳与轻质烯烃的还原官能化
- 批准号:
2349537 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAS: Functionalization of Earth-Abundant, Molecular Group 4 Photosensitizers for Photochemical Applications
CAS:用于光化学应用的地球丰富的 4 分子族光敏剂的功能化
- 批准号:
2349986 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAS: Supported Intermetallic Catalysts for Tandem Conversion of Light Alkanes and CO2
CAS:用于轻质烷烃和 CO2 串联转化的负载型金属间催化剂
- 批准号:
2400183 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: CAS: An Electrochemical Approach for Catalytic Dehydration
职业:CAS:催化脱水的电化学方法
- 批准号:
2339405 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
- 批准号:
2400727 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant