CAS: Photocatalysis on Hybrid Plasmonic Materials

CAS:混合等离子体材料的光催化

基本信息

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Professor Suljo Linic of University of Michigan is studying photochemical transformations on metal nanoparticles. These nanoparticles strongly absorb sunlight. It was recently shown that they can photolytically drive chemical transformations when illuminated with sunlight through a process known as plasmonic catalysis. The interest in the field is rooted in the fact that, in contrast to conventional thermally driven chemical reactions on metals, photoreactions on these nanoparticles present the possibility of providing higher efficiencies and product selectivity. Specifically, the Linic group is studying the hypothesis that the plasmonic catalysis of these nanoparticles can be optimized for high rates and selectivities through specific design of their surface composition and structure. The proposal promises to advance our understanding of using solar energy to drive chemistry in an environmentally sustainable and energy efficient manner. Professor Linic and his students will be involved in educational activities, such as development of a sustainable energy course, and multiple outreach efforts directed at underrepresented students in science.Under this award, Professor Suljo Linic and his team at the University of Michigan are studying chemical reactions on plasmonic metal nanoparticles. These nanoparticles are characterized by a resonant excitation of localized surface plasmon resonance (LSPR) when illuminated with solar intensity UV-vis light. It has been demonstrated that under the LSPR conditions, these nanoparticles can activate hot electron (hole)-driven chemical reactions at meaningful rates, and in contrast to conventional thermally driven chemical reactions on metals, where energy is indiscriminately dumped into every available reaction coordinate (and controlling product selectivity is challenging), the LSPR-driven reactions offer the opportunity to efficiently deposit energy into select reaction coordinates leading to high efficiencies and product selectivity. The central hypothesis of the project is that optimal plasmonic materials, allowing for higher reaction rates and product selectivity, are plasmonic single atom alloy (SAA) nanoparticles with a relatively large plasmonic (Ag or Au) nanoparticle (10s of nm), augmented with isolated single atoms of other metals (Pt, Pd, Rh, Ru) in the surface layer of the plasmonic nanoparticle. The SAAs are potentially an optimal marriage of the light harvesting potential of plasmonic nanoparticles and the chemical activity of the single atoms. It is postulated that these structures would allow us to control the resonant energy flow at the nanoscale, funneling energy efficiently and selectively in specific and desired chemical transformations. The proposal will test this hypothesis by: (i) synthesizing plasmonic SAA and characterizing their geometry, (ii) studying the flow of optical energy in these materials at nanoscales and (ii) testing these plasmonic SAA nanostructures in a number of steady state catalytic processes where the product selectivity is of critical importance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学催化计划的支持下,密歇根大学的Suljo Linic教授正在研究金属纳米颗粒的光化学转化。这些纳米颗粒强烈吸收阳光。最近表明,当用阳光照亮等离激子催化时,它们可以光解驱动化学转化。对田间的兴趣源于以下事实:与金属上的常规热驱动化学反应相反,这些纳米颗粒上的光反应提出了提供较高效率和产品选择性的可能性。具体而言,Linic组正在研究以下假设:这些纳米颗粒的等离子催化可以通过特定设计其表面组成和结构来优化高率和选择性。该提案有望促进我们对使用太阳能以环境可持续和节能的方式推动化学反应的理解。 Linic教授及其学生将参与教育活动,例如开发可持续能源课程,以及针对科学代表性不足的学生的多项宣传工作。在此奖项之后,Suljo Linic及其密歇根大学的团队正在研究等离激势金属纳米粒子的化学反应。这些纳米颗粒的特征在于用太阳强度UV-VIS光照明时对局部表面等离子体共振(LSPR)的共振激发。已经证明,在LSPR条件下,这些纳米颗粒可以以有意义的速率激活热电子(孔)驱动的化学反应,并且与金属上的传统热驱动的化学反应形成鲜明对比,在金属上不倾倒的能量被倾倒在每个可用的反应坐标中,并将其置于较高的反应中,使得能够使较高的反应构成了有效的反应,从而有效地使能量保持了有效的反应。效率和产品选择性。该项目的中心假设是,允许更高反应速率和产品选择性的最佳等离子材料是等离子体单原子合金(SAA)纳米颗粒,具有相对较大的等离激元(Ag或Au)纳米颗粒(10s的Nm),并用其他物质(Pt,pd,pd,rh,rh,ru)的单个物质的单个原子(rhan rh r u u u u u u us y huan)增强。 SaaS可能是血浆纳米颗粒的光收集潜力和单个原子的化学活性的最佳结合。据推测,这些结构将使我们能够控制纳米级的谐振能流,从而在特定和所需的化学转化中有效,有选择地将能量汇合。该提议将通过以下方式通过:(i)合成等离子SAA并表征其几何形状,(ii)研究这些材料在纳米级中的光学能量的流动,以及(ii)测试这些等离激元SAA纳米结构在许多稳态催化过程中使用稳定性的降级和指定的稳定性,并在其降级的情况下进行了评估。基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suljo Linic其他文献

Suljo Linic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suljo Linic', 18)}}的其他基金

Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
  • 批准号:
    2116646
  • 财政年份:
    2021
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
Maximizing efficiency in solar water splitting by engineering interfaces in hybrid photo-catalysts
通过混合光催化剂中的工程界面最大限度地提高太阳能水分解效率
  • 批准号:
    1803991
  • 财政年份:
    2018
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
Controlling the energy flow in multi-component plasmonic structures for selective catalysis
控制多组分等离子体结构中的能量流以实现选择性催化
  • 批准号:
    1800197
  • 财政年份:
    2018
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
INFEWS N/P/H2O: Photo-thermal ammonia synthesis of plasmonic metal nanoparticles
INFEWS N/P/H2O:等离子体金属纳米粒子的光热氨合成
  • 批准号:
    1702471
  • 财政年份:
    2017
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
  • 批准号:
    1362120
  • 财政年份:
    2014
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
  • 批准号:
    1436056
  • 财政年份:
    2014
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
Studies of the impact of plasmonic metal nano-particles on co-catalysts/semiconductor photocatalysts in solar water splitting
等离子体金属纳米颗粒对太阳能分解水助催化剂/半导体光催化剂影响的研究
  • 批准号:
    1437601
  • 财政年份:
    2014
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
Conference: Kokes Awards for the 20th North American Catalysis Society Meeting, Detroit, Michigan, June 5-10, 2011
会议:第 20 届北美催化学会会议 Kokes 奖,密歇根州底特律,2011 年 6 月 5 日至 10 日
  • 批准号:
    1115990
  • 财政年份:
    2011
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
Designing Efficient Platinum-Free Electrocatalysts for Oxygen Reduction Reaction
设计用于氧还原反应的高效无铂电催化剂
  • 批准号:
    1132777
  • 财政年份:
    2011
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
  • 批准号:
    1111770
  • 财政年份:
    2011
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Standard Grant

相似国自然基金

基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
  • 批准号:
    22378279
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
  • 批准号:
    22311530118
  • 批准年份:
    2023
  • 资助金额:
    37 万元
  • 项目类别:
    国际(地区)合作与交流项目
卟啉-苝酰亚胺供受体分子Π-Π共组装增强电荷分离用于光催化全解水
  • 批准号:
    22309093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维COF基S型异质结的构建及其光催化制氢耦合生物质转化研究
  • 批准号:
    22302183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光-多酶耦合串联催化系统的构建用于光催化CO2制甲醇
  • 批准号:
    22305131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Development and Applications of Novel, Hybrid Niobium Pentoxide Nanocomposites in Photocatalysis
新型杂化五氧化二铌纳米复合材料在光催化中的开发和应用
  • 批准号:
    RGPIN-2015-06009
  • 财政年份:
    2021
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-abiotic hybrid system for light-driven carbon dioxide conversion to produce ethanol
用于光驱动二氧化碳转化生产乙醇的生物非生物混合系统
  • 批准号:
    21K20485
  • 财政年份:
    2021
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The Development and Applications of Novel, Hybrid Niobium Pentoxide Nanocomposites in Photocatalysis
新型杂化五氧化二铌纳米复合材料在光催化中的开发和应用
  • 批准号:
    RGPIN-2015-06009
  • 财政年份:
    2020
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Discovery Grants Program - Individual
The Development and Applications of Novel, Hybrid Niobium Pentoxide Nanocomposites in Photocatalysis
新型杂化五氧化二铌纳米复合材料在光催化中的开发和应用
  • 批准号:
    RGPIN-2015-06009
  • 财政年份:
    2019
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid biological-synthetic biomass utilisation and valorisation through the combination of biotechnology and solar photocatalysis
通过生物技术和太阳能光催化的结合实现混合生物合成生物质的利用和增值
  • 批准号:
    2236108
  • 财政年份:
    2019
  • 资助金额:
    $ 50.63万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了