Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing

协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除

基本信息

  • 批准号:
    2333326
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Configuration troubleshooting in large-scale cyberinfrastructure (CI) software systems is a complex and costly task due to numerous configurable parameters. Existing methods like log mining and machine learning analysis face challenges in such environments. To address this, we present BGT4AutoCI (Automating CI Configuration Troubleshooting with Bayesian Group Testing), a groundbreaking solution that leverages Bayesian Group Testing, ensuring accurate results even with minimal prior knowledge and testing errors. Experienced CI operators can expedite the process with approximated prior knowledge. This research aims to revolutionize CI configuration troubleshooting, introducing a highly precise and efficient approach that will optimize the utilization of current and future large-scale CI systems.The primary focus of this research is to address critical challenges in automated configuration troubleshooting within large-scale CI systems. The proposed three-fold approach encompasses: (1) Formulating Bayesian Group Testing for CI configuration troubleshooting, which employs lattice models to accurately identify risks at the individual configuration parameter level, taking uncertainty into account during troubleshooting. (2) A multinomial paradigm for Bayesian Group Testing, which introduces multinomial responses to simultaneously observe multiple aspects of CI systems, enabling efficient test selection algorithms for jointly testing configuration parameters that impact various aspects of CIs. (3) Automated configuration troubleshooting, which involves the designs of several key components to establish BGT4AutoCI as an automated configuration troubleshooting framework that minimizes the need for human intervention. The outcomes of this project hold the potential to significantly enhance the efficiency and accuracy of CI configuration troubleshooting, benefiting current and future large-scale CI systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于大量的可配置参数,在大规模网络基础设施(CI)软件系统中的配置故障排除是一项复杂且昂贵的任务。日志挖掘和机器学习分析等现有方法在这种环境中面临挑战。为了解决这个问题,我们提出了BGT4AutoCI(使用贝叶斯组测试自动化CI配置故障排除),这是一个突破性的解决方案,利用贝叶斯组测试,即使在最小的先验知识和测试错误的情况下也能确保准确的结果。经验丰富的CI操作员可以通过近似的先验知识加快过程。本研究旨在彻底改变CI配置故障排除,引入一种高度精确和高效的方法,将优化当前和未来的大型CI系统的利用率。本研究的主要重点是解决大型CI系统中自动配置故障排除的关键挑战。所提出的三重方法包括:(1)制定用于CI配置故障排除的贝叶斯组测试,其采用格模型来准确地识别单个配置参数级别的风险,并在故障排除期间考虑不确定性。(2)贝叶斯群测试的多项式范式,它引入多项式响应以同时观察CI系统的多个方面,从而实现有效的测试选择算法,用于联合测试影响CI各个方面的配置参数。(3)自动化配置故障排除,包括设计几个关键组件,以将BGT 4AutoCI建立为自动化配置故障排除框架,最大限度地减少人工干预。该项目的成果有可能显著提高CI配置故障排除的效率和准确性,使当前和未来的大型CI系统受益。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Curtis Tatsuoka其他文献

eP366: A comprehensive study of E200K genetic Creutzfeldt Jakob disease cases; effects of codon 129 polymorphism
  • DOI:
    10.1016/j.gim.2022.01.401
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa Keinath;Ignazio Cali;Megan Piazza;Mark Cohen;Curtis Tatsuoka;Thomas Prior;Brian Appleby;Shashirekha Shetty
  • 通讯作者:
    Shashirekha Shetty
ASO Visual Abstract: Normal CEA Levels After Neoadjuvant Chemotherapy and Cytoreduction with Hyperthermic Intraperitoneal Chemoperfusion Predict Improved Survival from Colorectal Peritoneal Metastases
  • DOI:
    10.1245/s10434-024-15065-7
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Michael M. Wach;Geoffrey Nunns;Ahmed Hamed;Joshua Derby;Mark Jelinek;Curtis Tatsuoka;Matthew P. Holtzman;Amer H. Zureikat;David L. Bartlett;Steven A. Ahrendt;James F. Pingpank;M. Haroon A. Choudry;Melanie Ongchin
  • 通讯作者:
    Melanie Ongchin
Toward AI-Assisted Clinical Assessment for Patients with Multiple Myeloma: Feature Selection for Large Language Models
  • DOI:
    10.1182/blood-2023-172710
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Ehsan Malek;Gi-Ming Wang;Anant Madabhushi;Jennifer Cullen;Curtis Tatsuoka;James J. Driscoll
  • 通讯作者:
    James J. Driscoll
PLATELET AND MONOCYTE ACTIVATION AFTER TRANSCATHETER AORTIC VALVE REPLACEMENT (POTENT-TAVR): A RANDOMIZED CONTROLLED TRIAL OF TICAGRELOR VERSUS CLOPIDOGREL BEFORE TAVR
  • DOI:
    10.1016/s0735-1097(20)32097-0
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    David Alexander Zidar;Sadeer Al-Kindi;Anthony Main;Michael Osnard;Nour Tashtish;Sahil Parikh;Nicholas Funderburg;Steven Juchnowski;Christopher Longenecker;Trevor Jenkins;Christopher Nmai;Curtis Tatsuoka;Marco Costa;Eugene Blackstone;Michael Lederman;Guilherme Attizzani;Daniel I. Simon
  • 通讯作者:
    Daniel I. Simon
P-137 Optimizing Feature Selection for Large Language Models in AI-Assisted Clinical Assessment of Multiple Myeloma
  • DOI:
    10.1016/s2152-2650(24)02040-8
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ehsan Malek;Gi-Ming Wang;Anant Madabhushi;Jennifer Cullen;Curtis Tatsuoka;James J. James J. Driscoll
  • 通讯作者:
    James J. James J. Driscoll

Curtis Tatsuoka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Curtis Tatsuoka', 18)}}的其他基金

Cognitive and Neural Correlates of Mathematics Problem Solving Using Diagnostic Modeling and Dynamic Real-Time fMRI
使用诊断模型和动态实时功能磁共振成像解决数学问题的认知和神经关联
  • 批准号:
    1561716
  • 财政年份:
    2016
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Cognitive Diagnosis with Multinomial Response Distributions
多项响应分布的认知诊断
  • 批准号:
    9810202
  • 财政年份:
    1998
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了