Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
基本信息
- 批准号:2334666
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Sleep is one of the most fundamental behaviors for animals and humans, and understanding group sleep will provide key insights into neuroscience and social behavior and interactions. To overcome limitations stemmed from single modality animal behavior platforms, the project will develop a multimodal machine learning method to simultaneously monitor and process the Electroencephalogram (EEG) data and animal behavior data to systematically study group behavior, especially sleep, and to annotate animal social movements/behavior. The outcomes from the project will potentially provide a powerful toolkit based on deep learning to make sense of complex animal behavior and EEG activity pattern for mechanistic exploration. Subproblems from this project will be developed into course materials and will be capstone projects or directed study for undergraduate students.The project will process multiple data modalities and group activities involving multiple entities from multiple data sources through a multi-modal machine learning framework enabling the extraction and aggregation of the most pertinent information. A “dictionary” of movements at the semantic level will be developed for learning and processing of long video and EEG data, which is a significant challenge for current state-of-the-art self-attention transformer models. Additionally to incorporate group interactions, transformer models for dialogue modeling will be developed. The proposed simultaneous EEG and behavior study will provide biological underpinnings of group sleep, leading to insights into brain electrical signaling and behavioral outputs - how the brain marshals its signaling units to generate behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
睡眠是动物和人类最基本的行为之一,理解群体睡眠将为神经科学、社会行为和互动提供关键的见解。为了克服单模态动物行为平台的局限性,该项目将开发一种多模态机器学习方法,同时监测和处理脑电图(EEG)数据和动物行为数据,系统地研究群体行为,特别是睡眠,并注释动物的社会运动/行为。该项目的结果可能会提供一个基于深度学习的强大工具包,以理解复杂的动物行为和脑电图活动模式,以进行机械探索。本计画的子问题将会发展成课程教材,并会成为本科学生的顶点计画或指导研究。该项目将通过多模态机器学习框架处理涉及多个数据源的多个实体的多种数据模式和组活动,从而提取和聚合最相关的信息。语义层面的运动“字典”将用于学习和处理长视频和脑电图数据,这是目前最先进的自注意变压器模型的一个重大挑战。此外,为了结合群体互动,将开发用于对话建模的变压器模型。同时提出的脑电图和行为研究将为群体睡眠提供生物学基础,从而深入了解大脑电信号和行为输出——大脑如何组织其信号单元来产生行为。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiqian Shen其他文献
Preoperative Sleep Disturbance as a Mediator of the Relationship Between Decreased Physical Activity and Postoperative Pain
术前睡眠障碍作为身体活动减少与术后疼痛关系的中介因素
- DOI:
10.1016/j.jpain.2024.01.317 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:4.000
- 作者:
Angelina R. Franqueiro;Jenna M. Wilson;Emily Rosado;Victoria R. Falso;Dennis Muñoz-Vergara;Michael T. Smith;Elizabeth B. Klerman;Shiqian Shen;Kristin L. Schreiber - 通讯作者:
Kristin L. Schreiber
Challenges in the Diagnosis and Management of Pain in Individuals with Autism Spectrum Disorder
自闭症谱系障碍患者疼痛诊断和管理的挑战
- DOI:
10.1007/s40489-020-00199-7 - 发表时间:
2020 - 期刊:
- 影响因子:3.8
- 作者:
Jun Liu;Lucy L. Chen;Shiqian Shen;J. Mao;M. Lopes;Siyu Liu;Xuejun Kong - 通讯作者:
Xuejun Kong
Repeated early-life exposure to anaesthesia and surgery causes subsequent anxiety-like behaviour and gut microbiota dysbiosis in juvenile rats
幼年大鼠反复接受麻醉和手术会导致随后的焦虑样行为和肠道微生物群失调
- DOI:
10.1016/j.bja.2022.06.039 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xue Zhou;Xuanxian Xu;Dihan Lu;Keyu Chen;Yan Wu;Xiaoyu Yang;Wei Xiong;Xi Chen;Liangtian Lan;Wenda Li;Shiqian Shen;Wen He;Xia Feng - 通讯作者:
Xia Feng
Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review
内质网应激作为慢性疼痛新的治疗靶点:一项叙述性综述
- DOI:
10.1016/j.bja.2024.01.007 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:9.200
- 作者:
Harper S. Kim;Donghwan Lee;Shiqian Shen - 通讯作者:
Shiqian Shen
Editor's Note: Listeria monocytogenes Promotes Tumor Growth via Tumor Cell Toll-Like Receptor 2 Signaling.
编者注:单增李斯特菌通过肿瘤细胞 Toll 样受体 2 信号传导促进肿瘤生长。
- DOI:
10.1158/0008-5472.can-19-1891 - 发表时间:
2019 - 期刊:
- 影响因子:11.2
- 作者:
Bo Huang;Jie Zhao;Shiqian Shen;Hongxing Li;K. He;G. Shen;L. Mayer;J. Unkeless;Dong Li;Ye Yuan;Gui;H. Xiong;Zuo - 通讯作者:
Zuo
Shiqian Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant