Collaborative Research: RAPID: Empowering Math Teachers with an AI Tool for Auto-Generation of Technology-Enhanced Assessments
合作研究:RAPID:为数学教师提供自动生成技术增强评估的人工智能工具
基本信息
- 批准号:2335835
- 负责人:
- 金额:$ 11.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proliferation of artificial intelligence (AI) and powerful Large Language Models (LLMs) has evoked excitement and confusion among K-12 teachers regarding AI's impact on teaching, assessments, and student work. It is vital for researchers with expertise in human-centered teaching and learning to share empirically grounded proofs-of-concept of teacher-AI teaming to enhance teacher capacities for better learning outcomes for all students. This RAPID project examines how the use of LLM-powered tools in high school math classes empowers teachers to create complex technology-enhanced assessments (TEAs) that formatively measure higher-order thinking skills and facilitate deeper learning. The task of authoring such TEAs has necessitated programming expertise and extensive technical skills and thus excluded most K-12 math teachers from participating. By showcasing an exemplary model of teacher-AI teaming, this project addresses a crucial, timely need to establish an early, positive narrative that places teachers at the center of the AI revolution in K-12 education. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097) and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.This time-sensitive project will advance research on the use of AI and LLMs for teaching in high school mathematics classrooms through the use of Edfinity software that uses the open-source WeBWorK format to generate interactive, auto-gradable, technology-enhanced formative assessments to support student learning. Within this context, teachers will describe a math problem with an LLM tool (ALICE) that is trained to use natural language inputs, generating source code for TEAs along with hints and student feedback. The project brings together a multidisciplinary team of math educators, STEM education and learning sciences researchers, K-12 teacher educators, AI tool developers, and AI experts to examine the integration of ALICE into high school Finite Mathematics courses across 34 rural, urban, and suburban schools in Indiana and Illinois. The project will train high school teachers and gather data to advance and shape our understanding of teacher-AI teaming and domain-specific LLM prompt engineering. The research involves gathering log data from the platform on teachers' ALICE usage and prompt engineering, as well as teacher feedback through surveys and interviews. These data will be analyzed to understand teachers' experiences in using an LLM tool, the impacts on teacher attitudes toward and confidence in AI, and the success of ALICE from teachers' perspectives for the generation of quality, interactive, formative assessments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)和强大的大型语言模型(LLM)的激增引起了K-12教师对AI对教学,评估和学生工作的影响的兴奋和困惑。对于具有以人为本的教学和学习专业知识的研究人员来说,分享教师-人工智能团队的经验基础概念证明,以提高教师的能力,为所有学生提供更好的学习成果至关重要。这个快速项目探讨了如何在高中数学课上使用LLM动力工具,使教师能够创建复杂的技术增强评估(TEA),从而形成性地衡量高阶思维技能并促进更深入的学习。编写此类TEAs的任务需要编程专业知识和广泛的技术技能,因此将大多数K-12数学教师排除在参与之外。通过展示教师与人工智能合作的示范模型,该项目解决了一个关键的、及时的需求,即建立一个早期的、积极的叙事,将教师置于K-12教育中人工智能革命的中心。本提案是对亲爱的同事信(DCL)的回应:在正式和非正式环境中快速加速人工智能在K-12教育中的研究(NSF 23-097),并由学生和教师创新技术经验(ITEST)计划资助,该计划支持建立对实践,计划要素,有助于增加学生对科学,技术,工程,和数学(STEM)和信息和通信技术(ICT)的职业。这一次-敏感的项目将推进研究使用人工智能和法学硕士在高中数学课堂教学,通过使用Edgeon软件,使用开源的WebWorkK格式,以生成互动,自动分级,技术强化形成性评估,以支持学生学习。在这种情况下,教师将描述一个数学问题与LLM工具(ALICE),该工具经过训练,使用自然语言输入,生成源代码与提示和学生反馈一起为TEAs沿着。该项目汇集了一个由数学教育工作者、STEM教育和学习科学研究人员、K-12教师教育工作者、AI工具开发人员和AI专家组成的多学科团队,以研究将ALICE整合到印第安纳州和伊利诺伊州34所农村、城市和郊区学校的高中有限数学课程中。该项目将培训高中教师并收集数据,以推进和塑造我们对教师人工智能团队和特定领域LLM即时工程的理解。该研究涉及从平台收集有关教师ALICE使用和提示工程的日志数据,以及通过调查和采访收集教师反馈。这些数据将被分析,以了解教师使用LLM工具的经验,对教师对AI的态度和信心的影响,以及从教师的角度来看ALICE的成功,以生成质量,互动,形成性评估。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuchi Grover其他文献
The MOOC as Distributed Intelligence: Dimensions of a Framework & Evaluation of MOOCs
MOOC 作为分布式智能:框架的维度
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Shuchi Grover;Paul Franz;Emily Schneider;R. Pea - 通讯作者:
R. Pea
Student Attitudes During the Pilot of the Computer Science Frontiers Course
计算机科学前沿课程试点期间学生的态度
- DOI:
10.1145/3568812.3603483 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Janet Brock;Isabella Gransbury;Veronica Catété;Tiffany Barnes;Shuchi Grover;Á. Lédeczi - 通讯作者:
Á. Lédeczi
Including Neurodiversity in Foundational and Applied Computational Thinking (INFACT)
将神经多样性纳入基础和应用计算思维 (INFACT)
- DOI:
10.1145/3478432.3499044 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Asbell;Tara Robillard;Teon Edwards;E. Bardar;David Weintrop;Shuchi Grover;Maya Israel - 通讯作者:
Maya Israel
Enduring Lessons from 'Computer Science for All' for AI Education in Schools
学校人工智能教育的“全民计算机科学”的持久教训
- DOI:
10.1145/3626253.3631656 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shuchi Grover;Deborah Fields;Yasmin B. Kafai;Shana V. White;Carla Strickland - 通讯作者:
Carla Strickland
Using Data to Inform Computing Education Research and Practice
使用数据为计算教育研究和实践提供信息
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
T. Price;Baker Franke;Shuchi Grover;Monica Mcgill - 通讯作者:
Monica Mcgill
Shuchi Grover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuchi Grover', 18)}}的其他基金
EAGER: SaTC-EDU: A Case- and Play-Based Learning Module for Cybersecurity and Artificial Intelligence Education for Early Teen Learners
EAGER:SaTC-EDU:针对早期青少年学习者的网络安全和人工智能教育的基于案例和游戏的学习模块
- 批准号:
2113803 - 财政年份:2021
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
Collaborative Research: Beyond CS Principles:Engaging Female High School Students in New Frontiers of Computing
协作研究:超越计算机科学原理:让女高中生参与计算新领域
- 批准号:
1949488 - 财政年份:2020
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
EAGER: Seeding an Assessments Hub and Catalyzing a Community of Educators for Student Success in CS (SUCCESSinCS)
EAGER:培育评估中心并促进教育工作者社区促进学生在计算机科学领域取得成功 (SUCCESSinCS)
- 批准号:
1943530 - 财政年份:2019
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 11.85万 - 项目类别:
Standard Grant