I-Corps: Catalytic Artificial Self-Assemblies for the Biocatalytic Production of Small Molecules

I-Corps:用于小分子生物催化生产的催化人工自组装体

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a class of synthetic cells that can replace conventional biocatalytic processes for chemical production. Currently, biocatalysis of small molecules is implemented by two main methods: whole-cell catalysis and cell-free catalysis, both of which have their advantages and challenges. Whole-cell catalysis is limited in production metrics by the accumulation of toxins. In contrast, cell-free systems can support higher production metrics but suffer from enzyme degradation, which makes the manufacturing of complex chemicals difficult and economically unfeasible. The proposed technology provides an intermediate route to alleviate these challenges, and may be used to produce small molecules currently manufactured from conventional biocatalytic means, such as food additives and fragrances, drug precursors, and biofuels. For example, the proposed technology may be used to produce isobutanol from lignocellulose, which is considered the next generation of biofuels. Lignocellulose is the largest naturally available feedstock and is not derived from food sources, eliminating concerns about biofuel competition with food production. Compared with conventional ethanol biofuels, isobutanol may be blended with gasoline at higher concentrations and used directly in the existing petroleum infrastructure. The proposed technology is expected to achieve a 95% isobutanol yield from saccharified lignocellulose concentrations due to its improved tolerance compared to microbes, and lower greenhouse gas emissions by 70%, which cannot be achieved by conventional methods.This I-Corps project is based on the development of colloidal materials, called catalytic artificial self-assemblies (CASA), which are synthetic cells for the biocatalytic production of small molecules. The proposed technology uses complex coacervate protocells prepared and stabilized using low-cost, commercially available polymers. Simplified complex coacervate protocells have been shown to preserve enzymes in their near-native environments while still providing the flexibility of cell-free systems. Protocells of complex coacervate microdroplet emulsions improve enzymatic reaction rates by up to 25-fold and provide long-term stability (~4 months) to enzymes as well as processing flexibility not accessible in cells. In addition to showing improved reaction metrics, CASA is robust to environmental perturbations and overcomes key challenges concerning cell toxicity in whole cell systems, and enzyme stability in cell-free systems. This may allow a more flexible and economical bioreactor design and scaling up of these processes where the proposed platform may be used as a standalone method or integrated into existing industrial pipelines to reduce the cost of chemical production.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是开发一类合成细胞,可以取代传统的化学生产生物催化过程。 目前,小分子生物催化主要有两种方法:全细胞催化和无细胞催化,这两种方法各有其优势和挑战。全细胞催化在生产指标上受到毒素积累的限制。相比之下,无细胞系统可以支持更高的生产指标,但会受到酶降解的影响,这使得复杂化学品的制造变得困难,在经济上也不可行。所提出的技术提供了一种中间途径来缓解这些挑战,并可用于生产目前由传统生物催化手段制造的小分子,如食品添加剂和香料,药物前体和生物燃料。 例如,所提出的技术可用于从木质纤维素生产异丁醇,这被认为是下一代生物燃料。木质纤维素是最大的天然原料,并非来自食物来源,从而消除了人们对生物燃料与粮食生产竞争的担忧。与传统的乙醇生物燃料相比,异丁醇可以以更高的浓度与汽油混合,并直接用于现有的石油基础设施。与微生物相比,该技术具有更好的耐受性,预计将从糖化木质纤维素浓缩物中获得95%的异丁醇产率,并将温室气体排放量降低70%,这是传统方法无法实现的。I-Corps项目基于胶体材料的开发,称为催化人工自组装(CASA),其是用于生物催化生产小分子的合成细胞。 所提出的技术使用使用低成本的市售聚合物制备和稳定的复合凝聚层原始细胞。简化的复合凝聚层原细胞已被证明可以在其接近天然的环境中保存酶,同时仍然提供无细胞系统的灵活性。复合凝聚层微滴乳液的原细胞可将酶促反应速率提高高达25倍,并为酶提供长期稳定性(约4个月)以及细胞中无法获得的加工灵活性。 除了显示出改进的反应指标外,CASA对环境扰动具有鲁棒性,并克服了有关全细胞系统中细胞毒性和无细胞系统中酶稳定性的关键挑战。 这可能会允许一个更灵活和经济的生物反应器设计和放大这些过程中,拟议的平台可以被用作一个独立的方法或集成到现有的工业管道,以降低化学品生产的成本。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samanvaya Srivastava其他文献

Enabling carbon dioxide mineralization and active set control in portlandite-based cementitious suspensions
在基于氢氧化钙的胶凝悬浮液中实现二氧化碳矿化和活性组控制
  • DOI:
    10.1016/j.cemconcomp.2025.106123
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    13.100
  • 作者:
    Xiaodi Dai;Sharu Bhagavathi Kandy;Rui Xiao;Manas Sarkar;Shubham Wani;Thiyagarajan Ranganathan;Narayanan Neithalath;Aditya Kumar;Mathieu Bauchy;Edward Garboczi;Torben Gädt;Samanvaya Srivastava;Gaurav Sant
  • 通讯作者:
    Gaurav Sant
Salt Weakens Intermicellar Interactions and Structuring in Bulk Solutions and Foam Films.
盐会削弱散装溶液和泡沫薄膜中的胶束间相互作用和结构。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Shang Gao;C. Ochoa;V. Sharma;Samanvaya Srivastava
  • 通讯作者:
    Samanvaya Srivastava
Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids.
牛顿纳米粒子流体中的超扩散动力学。
  • DOI:
    10.1021/acsmacrolett.5b00319
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Samanvaya Srivastava;Praveen Agarwal;R. Mangal;D. Koch;S. Narayanan;L. Archer
  • 通讯作者:
    L. Archer
Design and function of thermoresponsive-ultrafast stiffening suspension formulations for 3D printing
用于 3D 打印的热响应超快硬化悬浮液配方的设计与功能
  • DOI:
    10.1016/j.cemconcomp.2024.105905
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    13.100
  • 作者:
    Sharu Bhagavathi Kandy;Sebastian Remke;Thiyagarajan Ranganathan;Shubham Kiran Wani;Xiaodi Dai;Narayanan Neithalath;Aditya Kumar;Mathieu Bauchy;Edward Garboczi;Torben Gädt;Samanvaya Srivastava;Gaurav Sant
  • 通讯作者:
    Gaurav Sant
Hybrid Organic–Inorganic Composites Based on Glycolyzed Polyurethane
基于糖解聚氨酯的有机-无机杂化复合材料
  • DOI:
    10.1021/acssuschemeng.2c04580
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Divya Iyer;Michael T. Gallagher;D. Simonetti;G. Sant;Samanvaya Srivastava
  • 通讯作者:
    Samanvaya Srivastava

Samanvaya Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samanvaya Srivastava', 18)}}的其他基金

CAREER: Hierarchical Structures and Tunable Mechanics of Polyelectrolyte Complex-Interpenetrating Network (PEC-IPN) Hydrogels
职业:聚电解质复合互穿网络(PEC-IPN)水凝胶的层次结构和可调力学
  • 批准号:
    2048285
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

Construction of Artificial Nucleic Acids with Highly Active Catalytic Target RNA Cleavage Ability and Development as a Therapeutic Platform
具有高活性催化靶RNA切割能力的人工核酸的构建及其作为治疗平台的开发
  • 批准号:
    23H05465
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Fluidized Catalytic Cracking (FCC) and Chemical Looping Combustion (CLC): Kinetics , First Principle Models (FPM), Data Driven Models (DDM) and Artificial Intelligence (AI)
流化催化裂化 (FCC) 和化学循环燃烧 (CLC):动力学、第一原理模型 (FPM)、数据驱动模型 (DDM) 和人工智能 (AI)
  • 批准号:
    555745-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Fluidized Catalytic Cracking (FCC) and Chemical Looping Combustion (CLC): Kinetics , First Principle Models (FPM), Data Driven Models (DDM) and Artificial Intelligence (AI)
流化催化裂化 (FCC) 和化学循环燃烧 (CLC):动力学、第一原理模型 (FPM)、数据驱动模型 (DDM) 和人工智能 (AI)
  • 批准号:
    555745-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Fluidized Catalytic Cracking (FCC) and Chemical Looping Combustion (CLC): Kinetics , First Principle Models (FPM), Data Driven Models (DDM) and Artificial Intelligence (AI)
流化催化裂化 (FCC) 和化学循环燃烧 (CLC):动力学、第一原理模型 (FPM)、数据驱动模型 (DDM) 和人工智能 (AI)
  • 批准号:
    555745-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Preparation of Artificial Dicopper Enzymes for the Catalytic Reduction of CO2
催化还原CO2人工二铜酶的制备
  • 批准号:
    9377497
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
Preparation of Artificial Dicopper Enzymes for the Catalytic Reduction of CO2
催化还原CO2人工二铜酶的制备
  • 批准号:
    9192395
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
Computational design of catalytic materials to enable artificial photosynthesis
催化材料的计算设计以实现人工光合作用
  • 批准号:
    497339-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    University Undergraduate Student Research Awards
Tailor-made artificial enzymes (catalytic antibodies) by the development of holo-abzymes
通过全抗体酶的开发定制人工酶(催化抗体)
  • 批准号:
    26410184
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Novel Artificial Dinuclear Metalloenzymes and Application to Catalytic Oxidation Reactions
新型人工双核金属酶的开发及其在催化氧化反应中的应用
  • 批准号:
    25620044
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies on the introduction of transition-metal compounds into the antigen-combining site of tailor-made artificial enzyme (catalytic antibody)
将过渡金属化合物引入特制人工酶(催化抗体)抗原结合位点的研究
  • 批准号:
    23550196
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了