CAREER: Experimental and Computational Studies of Biomolecular Topology

职业:生物分子拓扑的实验和计算研究

基本信息

项目摘要

NON TECHNICAL SUMMARYEverything we make, we make out of atoms or molecules. We have a good understanding of how atoms and simple molecules behave, but it is harder to understand more complicated molecules. Some of the more complicated molecules are connected in ways that simpler molecules aren’t. Where simple molecules might connect like Lego bricks, more complicated molecules might connect like links on a chain. The challenge is that molecules are very small, too small to see with a microscope, and too fast to record with a camera. We overcome this challenge in two ways. One is by using bigger molecules. DNA is best known for containing our genetic code, but it’s also just an extremely large molecule that we can study in a microscope. We can do experiments with DNA to learn about how molecules behave, and apply those lessons to smaller molecules. For example, we measure how stretchy a single DNA molecule is, and use that information to understand how the molecules that make up rubber become stretchy. The other way is to use computer simulations, which can show us how molecules would behave if we could see them. The main molecules studied in this project are called kinetoplasts, which are like medieval chainmail armor made of thousands of connected loops of DNA. We study these with a microscope, and with computer simulations, to understand how much smaller chainmail-like molecules, which chemists are now learning to make, would behave. In the future, our understanding of chemical chainmail molecules could allow newer, fancier materials and nanomachines created atom by atom, if we first understand DNA chainmail. We will also teach a new generation of students to study molecules, by having them take microscopic videos of droplets full of molecules as they evaporate. Since nobody has observed those specific molecules evaporating in that way before, the students will learn what it’s like to discover something new, in addition to learning how to do the experiments. As part of the educational aspects of this grant, students at a minority-serving primarily-undergraduate institution will carry out original research as part of a course-based undergraduate research experience. The experience of a new discovery will build a sense of belonging in the scientific community and support their identities as scientists rather than just science students.TECHNICAL SUMMARYThe goal of this project is to understand the relationship between molecule topology and material properties of complex biopolymers through single-molecule experiments and coarse-grained simulations. Biopolymers serve as a mesoscopic system on the micron scale analogous to synthetic polymers on the nanometer scale. The experiments will largely focus on single-molecule fluorescence microscopy. Kinetoplasts, which are planar networks of topologically linked DNA, will be studied as a model system for synthetic polycatenanes and thermalized graphene. In particular, we are interested in how the topology of then network, which can be tuned by the action of enzymes, effects the elastic response to kinetoplasts in microfluidic shear flow. We will also develop assays to use genomic-length DNA as a tracer polymer in active fluids, which drive their own internal complex flows through the conversion of chemical energy. The fluctuations and conformations of the molecule will be used to determine how life-like systems approach and avoid maximum-entropy states, establishing rules that help us understand the physics of life. Additionally, we will explore the use of partial denaturation (a topological change in linear DNA) to improve nanopore genomic mapping technology. Simulations will use Langevin dynamics and gradient optimization to study the relationship between the topology of molecular chainmail and the large-scale structure of the sheets that they form, as well as to investigate the relationship between denaturation transitions and knotted molecular topologies. As part of the broader impacts of this grant, students at a minority-serving primarily-undergraduate institution will carry out original research as part of a course-based undergraduate research experience, initially studying nematic liquid crystals in Marangoni flow. The experience of a new discovery will build a sense of belonging in the scientific community and support their identities as scientists rather than just science students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结我们制造的一切都是由原子或分子组成的。我们对原子和简单分子的行为已经有了很好的理解,但要理解更复杂的分子就更难了。一些更复杂的分子以简单分子所没有的方式连接在一起。简单的分子可能像乐高积木一样连接,更复杂的分子可能像链条上的链接。挑战在于分子非常小,太小以至于用显微镜看不到,太快以至于用相机无法记录。我们以两种方式克服这一挑战。一种是使用更大的分子。DNA以包含我们的遗传密码而闻名,但它也只是一个非常大的分子,我们可以在显微镜下研究。我们可以用DNA做实验来了解分子的行为,并将这些经验应用于更小的分子。例如,我们测量单个DNA分子的弹性,并利用这些信息来了解组成橡胶的分子如何变得有弹性。另一种方法是使用计算机模拟,它可以向我们展示如果我们可以看到分子的行为。在这个项目中研究的主要分子被称为动质体,它就像中世纪的锁子甲盔甲,由数千个连接的DNA环组成。我们用显微镜和计算机模拟来研究这些分子,以了解化学家们正在学习制造的更小的链甲状分子的行为。在未来,如果我们首先理解DNA链甲,我们对化学链甲分子的理解可以让更新,更好的材料和纳米机器一个原子一个原子地创造出来。我们还将教新一代的学生研究分子,让他们拍摄充满分子的液滴蒸发的显微镜视频。由于以前没有人观察过这些特定的分子以这种方式蒸发,学生们除了学习如何做实验外,还将学习发现新事物的感觉。作为该补助金教育方面的一部分,少数民族服务的小学本科院校的学生将开展原创性研究,作为基于课程的本科研究经验的一部分。新发现的经验将建立在科学界的归属感,并支持他们作为科学家的身份,而不仅仅是理科学生。技术概述本项目的目标是通过单分子实验和粗粒度模拟来了解复杂生物聚合物的分子拓扑结构和材料性质之间的关系。生物聚合物在微米尺度上充当介观系统,类似于纳米尺度上的合成聚合物。实验将主要集中在单分子荧光显微镜。动质体,这是拓扑连接的DNA的平面网络,将被研究作为合成聚链烷和热化石墨烯的模型系统。特别是,我们感兴趣的是,然后网络的拓扑结构,它可以通过酶的作用进行调整,影响微流体剪切流中动质体的弹性响应。我们还将开发使用基因组长度的DNA作为活性流体中的示踪聚合物的测定方法,该聚合物通过化学能的转换驱动其自身的内部复杂流动。分子的波动和构象将被用来确定类生命系统如何接近和避免最大熵状态,建立帮助我们理解生命物理学的规则。此外,我们将探索使用部分变性(线性DNA中的拓扑变化)来改进纳米孔基因组作图技术。模拟将使用朗之万动力学和梯度优化来研究分子链甲的拓扑结构和它们形成的大规模结构之间的关系,以及研究变性转变和打结分子拓扑结构之间的关系。作为该补助金更广泛影响的一部分,少数民族服务的小学本科生机构的学生将开展原创性研究,作为基于课程的本科生研究经验的一部分,最初研究马兰戈尼流中的液晶。新发现的经验将建立在科学界的归属感,并支持他们作为科学家的身份,而不仅仅是理科学生。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Klotz其他文献

Alexander Klotz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Klotz', 18)}}的其他基金

RUI: Materials Physics with Kinetoplast DNA
RUI:利用 Kinetoplast DNA 进行材料物理
  • 批准号:
    2105113
  • 财政年份:
    2021
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Tracking the evolution of human locomotion through field, experimental, and computational analyses of fossil footprints
职业:通过对化石足迹的现场、实验和计算分析来跟踪人类运动的演变
  • 批准号:
    2335894
  • 财政年份:
    2024
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Continuing Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
  • 批准号:
    2238859
  • 财政年份:
    2023
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Standard Grant
CAREER: An Integrated Computational and Experimental Framework to Understand Deformation and Failure of Porous Materials
职业:了解多孔材料变形和失效的综合计算和实验框架
  • 批准号:
    2145222
  • 财政年份:
    2022
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Standard Grant
CAREER: Performance through Curvature – An Integrated Computational and Experimental Study of the Mechanics of 3D Self-Architected Materials
职业:通过曲率实现性能 — 3D 自建筑材料力学的综合计算和实验研究
  • 批准号:
    2142460
  • 财政年份:
    2022
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Experimental Mechanistic Approach to Iron Catalyst and Reaction Design
职业:铁催化剂和反应设计的计算和实验机理方法
  • 批准号:
    2221728
  • 财政年份:
    2022
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Continuing Grant
CAREER: A paired experimental-computational approach to elucidate stress responses in early-branching eukaryotes
职业:阐明早期分支真核生物应激反应的配对实验计算方法
  • 批准号:
    2046472
  • 财政年份:
    2021
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the Corrosion Fatigue Behavior of Additively Processed Metals through an Integrated Experimental and Computational Approach
职业:通过综合实验和计算方法了解增材加工金属的腐蚀疲劳行为
  • 批准号:
    2044972
  • 财政年份:
    2021
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Corrosion Fatigue Behavior of Additively Processed Metals through an Integrated Experimental and Computational Approach
职业:通过综合实验和计算方法了解增材加工金属的腐蚀疲劳行为
  • 批准号:
    2139383
  • 财政年份:
    2021
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Standard Grant
CAREER: Combined Experimental and Computational Approach to Controlling Site Selectivity in Cross Coupling Chemical Reactions
职业:结合实验和计算方法来控制交叉偶联化学反应中的位点选择性
  • 批准号:
    1848090
  • 财政年份:
    2019
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Experimental Mechanistic Approach to Iron Catalyst and Reaction Design
职业:铁催化剂和反应设计的计算和实验机理方法
  • 批准号:
    1751568
  • 财政年份:
    2018
  • 资助金额:
    $ 75.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了