CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth

职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架

基本信息

  • 批准号:
    2238859
  • 负责人:
  • 金额:
    $ 57.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Musculoskeletal disorders and diseases are the leading cause of disability in the United States and account for more than one-half of all chronic conditions in people over 50 years of age in developed countries. This Faculty Early Career Development (CAREER) award supports research to build a better understanding of these disorders and diseases, through the development of a novel framework to evaluate growth and development of the hip joint in infants. The outcome of the study will be to identify major factors that drive and regulate growth early in life that may have long-term benefits for prevention of early arthritis. This project will address a wide class of problems involving mechanics, computational morphometrics, movement science, and mechanobiology. The research is integrated with an educational plan to expose high school, undergraduate, and graduate students to novel joint growth and development concepts using hands-on activities, 3D printing, and 3D visualizations. These activities will encourage high school students, including females and underrepresented minorities, to pursue STEM careers and will help educate the next generation of engineers. This study aims to reduce the physical, social, and economic burden for children affected by developmental disorders by increasing awareness among the public, and improving treatments for better outcomes.In this CAREER project, the PI will use experimental motion capture data, finite element analysis, statistical shape modeling, and multi-scale musculoskeletal mechanobiological modeling to develop a framework that provides non-invasive approaches to examine the dynamics of human movements. Infant’s spontaneous movements generate forces that are constantly acting on the joints, which can affect the morphology and development of the soft bone. Using combined experimental and computational tools, this research will predict the complex adaptation of the joint to biomechanical factors, thus providing a basis for improved prevention and treatment of developmental disorders. Specific tasks include establishing a lower limb atlas of infant morphology using statistical shape modeling, using pediatric movement science to quantify physiological joint forces and moments, and applying sensitivity and uncertainty analyses to systematically evaluate how inputs to this framework affect predictions of growth and development. Results from the research will: (1) Provide experimental data and computational models that can serve as the basis for developing innovative solutions for infant developmental disorders; (2) Develop innovative tools to aid clinicians, pediatricians, and physical therapists when managing joint disorders; (3) Identify major factors that quantify morphogenesis early in life that may have long-term benefits for prevention of early arthritis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
肌肉骨骼疾病是美国残疾的主要原因,占发达国家50岁以上人群所有慢性病的一半以上。该学院早期职业发展(CAREER)奖支持研究,通过开发一种新的框架来评估婴儿髋关节的生长和发育,从而更好地了解这些疾病和疾病。这项研究的结果将是确定在生命早期驱动和调节生长的主要因素,这些因素可能对预防早期关节炎有长期益处。这个项目将解决涉及力学,计算形态测量学,运动科学和机械生物学的广泛的一类问题。该研究与教育计划相结合,使高中生,本科生和研究生接触到使用动手活动,3D打印和3D可视化的新颖联合生长和发展概念。这些活动将鼓励高中生,包括女性和代表性不足的少数民族,追求STEM职业,并将有助于教育下一代工程师。本研究旨在通过提高公众对发育障碍的认识,改善治疗以获得更好的结果,从而减轻受发育障碍影响的儿童的身体,社会和经济负担。在这个CAREER项目中,PI将使用实验动作捕捉数据,有限元分析,统计形状建模,和多尺度肌肉骨骼机械生物学建模,以开发一个框架,提供非侵入性的方法来检查人体运动的动力学。婴儿的自发运动会产生不断作用于关节的力,这会影响软骨的形态和发育。使用实验和计算相结合的工具,这项研究将预测关节对生物力学因素的复杂适应,从而为改善发育障碍的预防和治疗提供基础。具体任务包括使用统计形状建模建立婴儿形态的下肢图谱,使用儿科运动科学来量化生理关节力和力矩,并应用敏感性和不确定性分析来系统地评估该框架的输入如何影响生长和发育的预测。研究结果将:(1)提供实验数据和计算模型,可作为开发婴儿发育障碍创新解决方案的基础;(2)开发创新工具,以帮助临床医生,儿科医生和物理治疗师管理关节疾病;(3)确定量化生命早期形态发生的主要因素,这些因素可能具有长期的该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Validation of a Biomechanical Injury and Disease Assessment Platform Applying an Inertial-Based Biosensor and Axis Vector Computation
  • DOI:
    10.3390/electronics12173694
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Kim,Wangdo;Vela,Emir A.;Gonzalez,Oscar
  • 通讯作者:
    Gonzalez,Oscar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Huayamave其他文献

Assessing Scaling and Kinematic Errors in a Coupled Experimental-Computational Infant Musculoskeletal Model
评估耦合实验计算婴儿肌肉骨骼模型中的缩放和运动学误差
Challenges in Kinetic-Kinematic Driven Musculoskeletal Subject-Specific Infant Modeling
运动学驱动的肌肉骨骼特定主题婴儿建模面临的挑战
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeram Lim;T. Chambers;Christine D. Walck;Safeer F. Siddicky;Erin M. Mannen;Victor Huayamave
  • 通讯作者:
    Victor Huayamave
Biomechanics of Developmental Dysplasia of the Hip - An engineering study of closed reduction utilizing the Pavlik harness for a range of subtle to severe dislocations in infants.
发育性髋关节发育不良的生物力学 - 一项利用 Pavlik 安全带闭合复位治疗婴儿一系列轻微到严重脱位的工程研究。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Huayamave
  • 通讯作者:
    Victor Huayamave
Validation of a Biomechanical Performance Assessment Platform Applying an Inertial-Bpased Biosensor and Axis Vector Computation
应用惯性基生物传感器和轴矢量计算的生物力学性能评估平台的验证

Victor Huayamave的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
  • 批准号:
    2309845
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
Multiscale Computational Microscopy of HIV-1
HIV-1 的多尺度计算显微镜
  • 批准号:
    10756808
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148646
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
CDS&E: Multiscale Computational Modeling of Flow-Induced Mechanical Deformation via Nonlocal Formulations
CDS
  • 批准号:
    2245343
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
  • 批准号:
    2322675
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
  • 批准号:
    10840682
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
ERI: A Computational and Experimental Approach to Establishing Multiscale and Multiphasic Structure-Function Mechanisms of Muscle Stiffness
ERI:建立肌肉僵硬多尺度、多相结构功能机制的计算和实验方法
  • 批准号:
    2301653
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了