CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division

职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调

基本信息

  • 批准号:
    2337141
  • 负责人:
  • 金额:
    $ 137.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

Cytokinesis is a fundamental cellular process in which a mother cell is divided into two or more daughter cells. All cells today are connected to the first cell that emerged several billion years ago, through the continuous events of cytokinesis. Despite this continuity, the mechanisms of cytokinesis as seen in today’s animals, plants, and prokaryotes appear unrelated without underlying principles, because most cytokinesis research has focused on a small number of organisms and cell types. As a result, we currently lack insights into the evolution of cytokinesis mechanisms. In this project, we will address the current knowledge gap and inherent bias in our understanding of cytokinesis by using the green alga Chlamydomonas reinhardtii. Chlamydomonas, divides by ingressing the plasma membrane like animals, yet it lacks the canonical animal cell-division machinery. Its division involves a hybrid of plant-division machinery and other components conserved in many eukaryotes, including humans. Furthermore, Chlamydomonas possesses a single chloroplast, which must be divided and segregated into daughter cells in coordination with the cell division process. Chloroplasts derive from a cyanobacterium that was engulfed by an early eukaryote and became a stable endosymbiont, and therefore possess their own division machinery of bacterial origin. Thus, by investigating cytokinesis and its coordination with chloroplast division in Chlamydomonas, this project will elucidate (i) the ancestral and fundamental mechanism of cytokinesis that is conserved in the majority of eukaryotes and (ii) the communication between the eukaryotic and bacterial division systems crucial for the establishment of endosymbiosis and subsequently the maintenance this essential organelle for photosynthesis. The Broader Impacts of the work include the intrinsic nature of the research as all cells undergo the process of cytokinesis. In addition, the project will provide research opportunities to high school students and their teachers, and educate undergraduate and graduate students about the current bias in the use of model organisms and the potential future opportunities emerging models can bring.The overall research goals of this project are to elucidate (i) the mechanism of actomyosin-independent, microtubule-dependent cleavage-furrow ingression in Chlamydomonas and (ii) the role of actin cytoskeleton in the spatiotemporal coordination of cytokinesis and chloroplast division. To this end, one part of this research will address how microtubules are organized at the division site using light and electron microscopy, and investigate the mechanisms of augmin-mediated formation of furrow-associated microtubules by genetics and proteomics. In another part, the project will investigate how nuclear-encoded proteins required for chloroplast division are transported to and translocated into the chloroplast in an F-actin-dependent manner, and identify novel genes and proteins involved in chloroplast division through genetic screens and proximity-based proteomics. Identifying the actomyosin-independent mechanisms of cleavage-furrow ingression is critical to elucidate the generalizable, fundamental rules governing the seemingly diverse and specialized modes of cytokinesis found across the eukaryotic tree, as well as to understand how these modern cells evolved from the ancestral ones that did not have an actomyosin ring. This research is also relevant to investigating the evolutionary events in early eukaryotes, because spatiotemporal coordination of division is a critical step in endosymbiosis between an ancestral eukaryotic cell and a cyanobacterial cell. Chlamydomonas provides an excellent system to fill these gaps in our current understanding. This project represents a crucial paradigm shift in the existing literature and classroom education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
胞质分裂是一个母细胞分裂成两个或多个子细胞的基本细胞过程。今天的所有细胞都通过胞质分裂的连续事件与数十亿年前出现的第一个细胞相连。尽管有这种连续性,但在今天的动物、植物和原核生物中看到的细胞质分裂机制似乎没有潜在的原理,因为大多数细胞质分裂研究集中在一小部分生物和细胞类型上。因此,我们目前对细胞质分裂机制的进化缺乏洞察力。在这个项目中,我们将通过使用绿藻衣藻来解决我们对细胞质分裂的理解中目前的知识差距和固有的偏见。衣藻,像动物一样通过插入质膜进行分裂,但它缺乏典型的动物细胞分裂机制。它的分裂涉及植物分裂机械和许多真核生物中保存的其他成分的混合,包括人类。此外,衣藻只有一个叶绿体,该叶绿体必须与细胞分裂过程相协调地分裂和分离成子细胞。叶绿体来源于蓝藻,蓝藻被早期的真核生物吞噬,成为稳定的内共生体,因此拥有自己的细菌起源的分裂机制。因此,通过研究衣藻的胞质分裂及其与叶绿体分裂的协调,本项目将阐明(I)在大多数真核生物中保守的胞质分裂的原始和基本机制,以及(Ii)真核细胞和细菌分裂系统之间的通信对于建立内共生并随后维持这一光合作用所必需的细胞器至关重要。这项工作的更广泛影响包括研究的内在本质,因为所有细胞都经历了胞质分裂的过程。此外,该项目将为高中生和他们的老师提供研究机会,并教育本科生和研究生关于当前模式生物使用的偏见和新兴模式可能带来的潜在未来机会。该项目的总体研究目标是阐明(I)衣藻中肌动蛋白非依赖的、微管依赖的分裂沟内侵的机制和(Ii)肌动蛋白细胞骨架在胞质分裂和叶绿体分裂的时空协调中的作用。为此,这项研究的一部分将利用光学和电子显微镜研究微管是如何在分裂部位组织起来的,并从遗传学和蛋白质组学角度探讨增强蛋白介导的沟槽相关微管形成的机制。另一方面,该项目将研究叶绿体分裂所需的核编码蛋白如何以F-肌动蛋白依赖的方式转运到叶绿体中,并通过遗传筛选和基于邻近的蛋白质组学识别参与叶绿体分裂的新基因和蛋白质。识别肌动球蛋白非依赖的分裂-皱沟进入机制对于阐明在真核细胞树中发现的似乎多样化和专门化的细胞质分裂模式的普遍、基本规则以及理解这些现代细胞是如何从没有肌动球蛋白环的祖先细胞进化而来的至关重要的。这项研究也与研究早期真核生物的进化事件有关,因为分裂的时空协调是祖先真核细胞和蓝藻细胞之间内共生的关键步骤。衣藻提供了一个极好的系统来填补我们目前理解中的这些空白。这个项目代表了现有文学和课堂教育的重要范式转变。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Masayuki Onishi其他文献

Nandalal Basu, Abanindranath and Rabindranath Tagore
南达拉尔·巴苏、阿宾德拉纳特和罗宾德拉纳特·泰戈尔
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Badenoch;Toshiki Osada;Madhu Purti;Masayuki Onishi;大西正幸
  • 通讯作者:
    大西正幸
Japan's Indic Fascination
日本的印度魅力
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Badenoch;Toshiki Osada;Madhu Purti;Masayuki Onishi;大西正幸;大西正幸
  • 通讯作者:
    大西正幸
ナンダラール・ボースと詩聖タゴール
南达拉尔·博斯和诗人泰戈尔
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Badenoch;Toshiki Osada;Madhu Purti;Masayuki Onishi;大西正幸;大西正幸;大西正幸
  • 通讯作者:
    大西正幸
Linguistic and cultural diversity in south Bougainville
布干维尔南部的语言和文化多样性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今里典子;大西正幸;大西正幸;大西正幸;大西正幸;稲垣和也;Masayuki Onishi;Yo Matsumoto;Masayuki Onishi
  • 通讯作者:
    Masayuki Onishi
リパーゼによる環状1,2-ジオールの速度論的光学分割とキラル環状ジ置換アミノ酸含有ペプチドの合成
脂肪酶对环状1,2-二醇的动力学光学拆分及手性环状双取代含氨基酸肽的合成
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomo Iwaki;Masayuki Onishi;Masaru Ikeuchi;Ayako Kita;Reiko Sugiura;Yuko Giga-Hama;Yasuhisa Fukui;Kaoru Takegawa;田中正一
  • 通讯作者:
    田中正一

Masayuki Onishi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DNA Replication and Cytokinesis.
DNA 复制和细胞分裂。
  • 批准号:
    10550052
  • 财政年份:
    2023
  • 资助金额:
    $ 137.58万
  • 项目类别:
Regulation of cytokinesis by the novel and conserved flavin-dependent monooxygenase enzymes OSGN-1/OSGIN
新型保守的黄素依赖性单加氧酶 OSGN-1/OSGIN 对胞质分裂的调节
  • 批准号:
    462673
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Operating Grants
Molecular Genetic Analysis of Regulatory Networks Governing Cytokinesis
细胞分裂调控网络的分子遗传学分析
  • 批准号:
    RGPIN-2019-05380
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Discovery Grants Program - Individual
Dissecting the role of Aurora A kinase in patterning the cell cortex during cytokinesis.
剖析 Aurora A 激酶在胞质分裂过程中细胞皮质模式化中的作用。
  • 批准号:
    10634513
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
Dedicator of cytokinesis 2 in pleural fibrosis
胸膜纤维化中胞质分裂2的奉献者
  • 批准号:
    10683791
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
  • 批准号:
    10748207
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
Studying mechanisms that spatially control cytokinesis
研究空间控制胞质分裂的机制
  • 批准号:
    RGPIN-2017-04161
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
  • 批准号:
    10330865
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
Collaborative Research: Regulation of exocytic membrane trafficking required for cytokinesis and polarized cell expansion
合作研究:胞质分裂和极化细胞扩张所需的胞吐膜运输的调节
  • 批准号:
    2154572
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Standard Grant
Examining cytokinesis in reductive cell divisions
检查还原性细胞分裂中的胞质分裂
  • 批准号:
    RGPIN-2021-03008
  • 财政年份:
    2022
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了