CAREER: Manipulation of Quantum Materials Through Strain
职业:通过应变操纵量子材料
基本信息
- 批准号:2337535
- 负责人:
- 金额:$ 75.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract: The advancement of human society is closely linked to the discovery, understanding, and application of materials. Throughout history, epochs have been categorized based on the materials, such as the stone age, bronze age, and iron age. Current era stands on the edge of the silicon age, characterized by the rapid growth of the semiconductor industry. However, a new category of materials, known as quantum materials, is emerging and is destined to become as familiar as silicon. These materials, crucial for future technologies like quantum computers, exhibit quantum effects across various energy and length scales, resulting in unique properties. Despite their potential, understanding of quantum materials remains limited. This research project is centered around the manipulation of quantum materials through uniaxial pressure to explore various 'emergent' phenomena. This approach aims to enhance the understanding of how the lattice influences the correlation in quantum materials, a fundamental yet crucial aspect of material science. Through integrated education and outreach efforts, this project trains students as the next generation of leaders in science through cutting-edge quantum materials research. Collaborations with the Museum of Natural History and Women in Science and Engineering at the University of Michigan enable effective engagement with the public and particularly underrepresented groups in science. As a result, this research project not only aims to push the boundaries of knowledge in quantum materials but also seeks to inspire and empower a diverse community of scientists, making significant contributions to the advancement of science and technology.Technical abstract: A major question in basic physical research is how to understand the collective behavior of interacting quantum objects that cannot be treated as non-interacting particles. In condensed matter physics, material systems consisting of numerous atoms, can be simplified by periodic potentials and Coulomb interactions. However, this simplest model often fails to capture the true nature of interactions. Alternatively, one can explore 'emergent' phenomena. Specifically, complex quantum materials, characterized by strong many-body interactions, offer an ideal platform to investigate fascinating phenomena. Additionally, the four fundamental degrees of freedom—lattice, charge, orbital, and spin—provide extensive tunability of exotic properties, leading to rich phase diagrams for correlated systems. Applying stress to a material represents a novel approach to manipulating its four fundamental degrees of freedom and symmetry, free from complexities arising from atomic substitutions. This research project aims to advance the understanding of correlated behaviors in quantum materials by probing electronic structure changes using recently developed modern uniaxial stress devices. The proposed research is organized into four key thrusts: 1) Investigating the strain effect on orbital mixing in a heavy fermion system. 2) Controlling magnetism through strain manipulation in an anisotropic 2D magnet. 3) Unraveling strain-induced emergent phenomena in quantum materials. 4) Discovering new correlated materials with potential for sensitive strain tuning. These research projects represent promising avenues for enhancing the comprehension of quantum materials and exploring their potential applications across various fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:人类社会的进步与材料的发现、理解和应用密切相关。纵观历史,时代一直根据材料进行分类,如石器时代、青铜时代和铁器时代。当今时代站在硅时代的边缘,以半导体行业的快速增长为特征。然而,一种名为量子材料的新材料正在出现,注定会像硅一样为人所熟知。这些材料对量子计算机等未来技术至关重要,它们在不同的能量和长度尺度上显示出量子效应,从而产生独特的性质。尽管量子材料具有潜力,但人们对它们的了解仍然有限。这个研究项目的中心是通过单轴压力操纵量子材料,以探索各种“浮现”现象。这种方法旨在加强对晶格如何影响量子材料中的关联的理解,这是材料科学的一个基本但关键的方面。通过综合教育和外展努力,该项目通过尖端量子材料研究将学生培养为科学领域的下一代领导者。与密歇根大学自然历史博物馆和妇女科学与工程博物馆的合作使其能够有效地接触公众,特别是在科学领域代表性不足的群体。因此,这项研究项目不仅旨在推动量子材料知识的边界,而且寻求激励和授权不同的科学家社区,为科学技术的进步做出重大贡献。技术摘要:基础物理研究中的一个主要问题是如何理解相互作用的量子物体的集体行为,这些量子物体不能被视为非相互作用的粒子。在凝聚态物理中,由多个原子组成的物质系统可以用周期势和库仑相互作用来简化。然而,这种最简单的模型往往无法捕捉到交互的真实本质。或者,人们可以探索“紧急”现象。具体地说,具有强烈多体相互作用特征的复杂量子材料为研究令人着迷的现象提供了一个理想的平台。此外,四个基本的自由度-晶格、电荷、轨道和自旋-提供了广泛的奇异性质的可调性,导致相关系统的丰富的相图。对材料施加应力代表了一种新的方法来操纵它的四个基本自由度和对称性,而不是由于原子替换而产生的复杂性。这项研究的目的是通过使用最近发展起来的现代单轴应力装置来探测电子结构的变化,从而促进对量子材料中相关行为的理解。这项研究分为四个关键部分:1)研究重费米子系统中的应变对轨道混合的影响。2)在各向异性二维磁体中通过应变操纵来控制磁性。3)解开量子材料中应变诱导的突现现象。4)发现具有敏感应变调谐潜力的新的相关材料。这些研究项目代表了增强对量子材料的理解并探索其在各个领域的潜在应用的有希望的途径。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Na Hyun Jo其他文献
Large exciton binding energy in a bulk van der Waals magnet from quasi-1D electronic localization
准一维电子局域化在块状范德华磁体中的大激子结合能
- DOI:
10.1038/s41467-025-56457-x - 发表时间:
2025-01-29 - 期刊:
- 影响因子:15.700
- 作者:
Shane Smolenski;Ming Wen;Qiuyang Li;Eoghan Downey;Adam Alfrey;Wenhao Liu;Aswin L. N. Kondusamy;Aaron Bostwick;Chris Jozwiak;Eli Rotenberg;Liuyan Zhao;Hui Deng;Bing Lv;Dominika Zgid;Emanuel Gull;Na Hyun Jo - 通讯作者:
Na Hyun Jo
Reconstruction of past climate and its effects on environment, ecology, and ecosystem using long-lived bivalve shell.
利用长寿的双壳贝壳重建过去的气候及其对环境、生态和生态系统的影响。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bumjoo Lee;Yukiaki Ishida;Jonghyeon Kim;Jinsu Kim;Na Hyun Jo;So Yeun Kim;Inho Kwak;Min-Cheol Lee;Kyungwan Kim;Jae Hoon Kim;Myung-Hwa Jung;Shik Shin;Tae Won Noh;and Hyunyong Choi;武藤 祥;Kotaro Shirai - 通讯作者:
Kotaro Shirai
民政移管の態様と文民統制との関係 ースペイン・ポルトガルの事例から
文官政府转型模式与文官控制的关系——以西班牙和葡萄牙为例
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bumjoo Lee;Yukiaki Ishida;Jonghyeon Kim;Jinsu Kim;Na Hyun Jo;So Yeun Kim;Inho Kwak;Min-Cheol Lee;Kyungwan Kim;Jae Hoon Kim;Myung-Hwa Jung;Shik Shin;Tae Won Noh;and Hyunyong Choi;武藤 祥 - 通讯作者:
武藤 祥
Comibining Political History and Political Science
政治史与政治学的结合
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bumjoo Lee;Yukiaki Ishida;Jonghyeon Kim;Jinsu Kim;Na Hyun Jo;So Yeun Kim;Inho Kwak;Min-Cheol Lee;Kyungwan Kim;Jae Hoon Kim;Myung-Hwa Jung;Shik Shin;Tae Won Noh;and Hyunyong Choi;武藤 祥;Kotaro Shirai;Carlos Domper Lasus and Giorgia Priorelli (eds.) - 通讯作者:
Carlos Domper Lasus and Giorgia Priorelli (eds.)
Na Hyun Jo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
- 批准号:
24K16999 - 财政年份:2024
- 资助金额:
$ 75.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Coherent Manipulation and Quantum Entanglement in Ultracold Reactions
EAGER:超冷反应中的相干操纵和量子纠缠
- 批准号:
2332539 - 财政年份:2023
- 资助金额:
$ 75.35万 - 项目类别:
Standard Grant
Demonstration of quantum state conversion between photon polarization and electron spin states by manipulation of a single photo-excited electron spin
通过操纵单个光激发电子自旋来演示光子偏振和电子自旋态之间的量子态转换
- 批准号:
22KJ2076 - 财政年份:2023
- 资助金额:
$ 75.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing a theory of general quantum process manipulation and its application
发展通用量子过程操纵理论及其应用
- 批准号:
23K19028 - 财政年份:2023
- 资助金额:
$ 75.35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Coherent exploration and manipulation of quantum materials
量子材料的相干探索和操纵
- 批准号:
RGPIN-2018-04865 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Acoustic-driven Manipulation of Electrons and Exciton Species in Atomically-thin Quantum Materials
职业:原子薄量子材料中电子和激子物种的声驱动操纵
- 批准号:
2146567 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Continuing Grant
Light-manipulation of quantum matter in an ultrafast fashion
以超快方式光操纵量子物质
- 批准号:
RGPIN-2021-04015 - 财政年份:2022
- 资助金额:
$ 75.35万 - 项目类别:
Discovery Grants Program - Individual
Theoretical studies on quantum transport and manipulation of nanoscale systems
纳米系统量子输运和操控的理论研究
- 批准号:
21F21022 - 财政年份:2021
- 资助金额:
$ 75.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Light-manipulation of quantum matter in an ultrafast fashion
以超快方式光操纵量子物质
- 批准号:
DGECR-2021-00278 - 财政年份:2021
- 资助金额:
$ 75.35万 - 项目类别:
Discovery Launch Supplement
Spectroscopy and Quantum-State Manipulation of Excited Rb Atoms and Molecules Using Optical Lattices
使用光学晶格对激发的 Rb 原子和分子进行光谱学和量子态操纵
- 批准号:
2110049 - 财政年份:2021
- 资助金额:
$ 75.35万 - 项目类别:
Continuing Grant