CAREER: The Impact of Associations and Biases in Generative AI on Society

职业:生成人工智能中的关联和偏见对社会的影响

基本信息

  • 批准号:
    2337877
  • 负责人:
  • 金额:
    $ 60.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

This project aims to solidify the foundations of ethics in generative artificial intelligence (AI). Generative AI systems are built on unimodal and multimodal combinations of language, speech, and vision machine learning models. Generative AI models such as the chatbot ChatGPT and the text-to-image generator Stable Diffusion offer innovative and practical tools. However, this technology has inherent problems. Generative AI models learn implicit associations and biases documented in cognitive psychology from large-scale sociocultural data, which is a source of human biases regarding gender, race or ethnicity, social class, age, ability, sexuality, nationality, religion, concepts, and intersectional associations. Generative AI bias poses implications for performance disparities in AI, as well as AI ethics, particularly concerning the impact of generative AI on individuals and society. Outputs from easily accessible generative AI models contain biased social associations, amplifying complex biases that are challenging to mitigate for both AI developers and users. This project will develop methods for evaluating associations and biases in generative AI, assess the impact of generative AI on society, and analyze how generative AI shapes human cognition and agency. The project will advance civil rights by developing methods to address bias in machines, human-AI collaboration, and society. The open-source tools and materials presented by this award will raise awareness among a range of stakeholders, including the diverse student population, researchers, developers, industry, the open-source community, AI users, policymakers, and the public. This effort will enhance AI education at the University of Washington by introducing a generative AI ethics curriculum across disciplines and divisions. As AI regulation and legislation are being formulated, the scientific evidence produced by this award will inform policymakers on the safe, secure, and trustworthy development and use of AI. Active collaboration with policy think-tanks will aid transfer of the knowledge to policymaking.This project will integrate computer and information science research in machine learning, natural language processing, computer vision, speech processing, and human-AI interaction with methodologies and large-scale datasets from social cognition. The project's primary objective is to empirically analyze the societal impact of generative AI, contributing to the ethical and responsible development and deployment of AI. The project seeks to evaluate and characterize associations and biases in generative AI systems by developing principled and generalizable detection and measurement methods. Leveraging the findings and developed bias evaluation methods, the research will devise approaches that automatically identify and reduce bias signals in generative AI models, taking into account the specific task, application, context, and use case. These approaches will encompass techniques such as training data augmentation, embedding space processing, fine-tuning, instruction tuning, and reinforcement learning from feedback. By examining generative AI biases in comparison to implicit and explicit biases of humans at the state and country levels and identifying emergent generative AI biases, the project will uncover the broader societal impact of generative AI. The analysis of changes in human implicit association test scores and decisions following exposure to biased generative AI outputs will assess their influence on human biases, perception, and decisions in human-AI collaboration. Accordingly, the award will develop novel approaches that align generative AI with human values by introducing new associations to mitigate the negative consequences caused by generative AI biases. The potential advancements resulting from this award extend beyond computer and information science, providing tools and insights for cognitive science, psychology, linguistics, sociology, and political science, while informing fields such as philosophy, law, and policy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在巩固生成人工智能(AI)的伦理基础。生成式AI系统建立在语言、语音和视觉机器学习模型的单峰和多峰组合之上。聊天机器人ChatGPT和文本到图像生成器Stable Diffusion等生成式人工智能模型提供了创新且实用的工具。然而,这项技术存在固有的问题。生成式人工智能模型从大规模社会文化数据中学习认知心理学中记录的隐式关联和偏见,这是人类对性别、种族或民族、社会阶层、年龄、能力、性取向、国籍、宗教、概念和交叉关联的偏见的来源。生成性AI偏见对AI的性能差异以及AI伦理产生了影响,特别是关于生成性AI对个人和社会的影响。易于访问的生成AI模型的输出包含有偏见的社会关联,放大了复杂的偏见,这对AI开发人员和用户来说都是一个挑战。该项目将开发用于评估生成AI中的关联和偏见的方法,评估生成AI对社会的影响,并分析生成AI如何塑造人类认知和代理。该项目将通过开发方法来解决机器、人类与人工智能协作和社会中的偏见,从而促进公民权利。该奖项提供的开源工具和材料将提高一系列利益相关者的认识,包括不同的学生群体、研究人员、开发人员、行业、开源社区、人工智能用户、政策制定者和公众。这一努力将通过引入跨学科和部门的生成性人工智能伦理课程来加强华盛顿大学的人工智能教育。随着人工智能法规和立法的制定,该奖项产生的科学证据将为决策者提供有关安全,可靠和值得信赖的人工智能开发和使用的信息。该项目将把机器学习、自然语言处理、计算机视觉、语音处理、人机交互等领域的计算机和信息科学研究,与社会认知领域的方法论和大规模数据集相结合。该项目的主要目标是实证分析生成AI的社会影响,促进AI的道德和负责任的开发和部署。该项目旨在通过开发原则性和可推广的检测和测量方法来评估和表征生成AI系统中的关联和偏见。利用研究结果和开发的偏差评估方法,该研究将设计自动识别和减少生成AI模型中的偏差信号的方法,同时考虑到特定的任务,应用程序,上下文和用例。这些方法将包括训练数据增强、嵌入空间处理、微调、指令调整和从反馈中强化学习等技术。通过将生成性AI偏见与州和国家层面人类的隐性和显性偏见进行比较,并识别新出现的生成性AI偏见,该项目将揭示生成性AI更广泛的社会影响。对人类内隐联想测试分数和决策在暴露于有偏见的生成AI输出后的变化进行分析,将评估它们对人类偏见、感知和人类-AI协作决策的影响。因此,该奖项将开发新的方法,通过引入新的关联来减轻生成AI偏见造成的负面后果,从而使生成AI与人类价值观保持一致。该奖项所带来的潜在进步超出了计算机和信息科学,为认知科学、心理学、语言学、社会学和政治学提供了工具和见解,同时为哲学、法律和政策等领域提供了信息。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aylin Caliskan其他文献

How do we decide how much to reveal?
我们如何决定透露多少?
  • DOI:
    10.1145/2738210.2738213
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aylin Caliskan
  • 通讯作者:
    Aylin Caliskan
Evidence for Hypodescent in Visual Semantic AI
视觉语义人工智能中的发育迟缓的证据
Transparency by Design
设计透明度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.F.L. Kay;T. Kuflik;Michael Rovatsos;Joanna J. Bryson;Robin Burke;Aylin Caliskan;Cristina Conati;Joshua A. Kroll
  • 通讯作者:
    Joshua A. Kroll
Testing the Effects of Agile and Flexible Supply Chain on the Firm Performance Through SEM
通过SEM测试敏捷柔性供应链对企业绩效的影响
  • DOI:
    10.1007/978-981-10-7323-6_3
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. R. Z. Sabegh;Aylin Caliskan;Yucel Ozturkoglu;Burak Çetiner
  • 通讯作者:
    Burak Çetiner
Iterative Effect-Size Bias in Ridehailing: Measuring Social Bias in Dynamic Pricing of 100 Million Rides
乘车服务中的迭代效应大小偏差:测量 1 亿次乘车动态定价中的社会偏差
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akshat Pandey;Aylin Caliskan
  • 通讯作者:
    Aylin Caliskan

Aylin Caliskan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于ImPACT方案的家长干预对孤独症谱系障碍儿童干预疗效及神经生物学机制研究
  • 批准号:
    82301732
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
2型糖尿病胰岛β细胞功能调控新靶点IMPACT的功能及作用机制研究
  • 批准号:
    81600598
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于IMPACT模型的社区慢性病干预效果的经济学评价研究
  • 批准号:
    71303173
  • 批准年份:
    2013
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: AAPF: From Dense Clusters to OB Associations: Tracing the Impact of Dynamics on Multiplicity beyond 10 AU in the Orion Complex
博士后奖学金:AAPF:从密集星团到 OB 关联:追踪动态对猎户座复合体 10 个天文单位以上多重性的影响
  • 批准号:
    2303911
  • 财政年份:
    2023
  • 资助金额:
    $ 60.33万
  • 项目类别:
    Fellowship Award
The impact of relatedness, familiarity, and reproductive condition on associations between female Ov
相关性、熟悉度和生殖状况对女性 Ov 之间关联的影响
  • 批准号:
    574760-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 60.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Associations entre l’exposition in utero au diabète gestationnel, la composition du lait maternel et le microbiote fécal : impact sur la croissance du nourrisson
子宫内暴露与糖尿病妊娠、母体乳成分和粪便微生物之间的关联:对努里森的影响
  • 批准号:
    486201
  • 财政年份:
    2022
  • 资助金额:
    $ 60.33万
  • 项目类别:
    Studentship Programs
Predicting the multi-omic impact of psychiatric GWAS associations
预测精神病学 GWAS 关联的多组学影响
  • 批准号:
    10735004
  • 财政年份:
    2022
  • 资助金额:
    $ 60.33万
  • 项目类别:
COVID-19 in pregnancy - impact on birth and placental outcomes and associations with race.
怀孕期间的 COVID-19 - 对出生和胎盘结局的影响以及与种族的关联。
  • 批准号:
    459218
  • 财政年份:
    2021
  • 资助金额:
    $ 60.33万
  • 项目类别:
    Operating Grants
Predicting the multi-omic impact of psychiatric GWAS associations
预测精神病学 GWAS 关联的多组学影响
  • 批准号:
    10061650
  • 财政年份:
    2019
  • 资助金额:
    $ 60.33万
  • 项目类别:
Predicting the multi-omic impact of psychiatric GWAS associations
预测精神病学 GWAS 关联的多组学影响
  • 批准号:
    10320945
  • 财政年份:
    2019
  • 资助金额:
    $ 60.33万
  • 项目类别:
Musculoskeletal Strength in End Stage Kidney Disease: Associations and Impact
终末期肾病的肌肉骨骼强度:关联和影响
  • 批准号:
    nhmrc : 1039638
  • 财政年份:
    2012
  • 资助金额:
    $ 60.33万
  • 项目类别:
    Postgraduate Scholarships
Peer Victimization and Adolescent Substance Use: Prospective Associations and Preliminary Impact of a Preventive PEERS Intervention
同伴受害和青少年药物使用:预防性同伴干预的前瞻性关联和初步影响
  • 批准号:
    283772
  • 财政年份:
    2012
  • 资助金额:
    $ 60.33万
  • 项目类别:
    Studentship Programs
Recall and Survivor Bias: Impact on SES-CVD Associations
回忆和幸存者偏差:对 SES-CVD 关联的影响
  • 批准号:
    7352754
  • 财政年份:
    2007
  • 资助金额:
    $ 60.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了