CAREER: Controlling the Deformability of Quantum Dots Solids for Wearable NIR Optoelectronics

职业:控制可穿戴近红外光电器件的量子点固体的变形能力

基本信息

项目摘要

NontechnicalWearable electronics that emit and detect near-infrared (IR) light hold promise for affordable and non-invasive healthcare, including early detection of disease and light therapy. In order to adapt to the natural movements of the skin, materials must maintain their structural integrity and electronic properties while being deformed or stressed. Many materials active in the near-IR are rigid and brittle, and thus cannot be used for wearable devices. The discovery of new materials for near-IR electronics is hindered due to a lack of fundamental understanding of how they behave under stress or strain. This project directly addresses that challenge. The PI will synthesize and systematically investigate composites that combine the strong near-IR optical response of quantum dots with the attractive electronic and physical properties of organic semiconductors. Through seamless integration of these materials, the PI will control their interactions and investigate their mechanical, optical, and electronic behavior. The fundamental understanding of molecular interactions developed through this project will enable breakthroughs in flexible electronics for healthcare, soft robotics, and in other fields. The PI is committed to broadening participation in STEM through strengthening pathway for students from high school through postgraduate studies. Education efforts will engage high school students in learning about nanomaterials and nanotechnology. The PI will create a new undergraduate course with interactive STEM outreach, and host a summer undergraduate research intern, thereby fostering diversity, equity, and inclusion in STEM.TechnicalThis project aims to better understand how colloidal quantum dot (CQD) solids respond to strain, by developing crucial structure-property relationships to reveal how the molecular-level chemical and structural interactions between CQD and conjugated polymers (CP) impact the mechanical, optical, and electronic properties of the resulting heterostructures, and importantly how these key properties respond to mechanical deformation. However, it is currently unclear how the molecular-level chemical and structural interactions between these two components impact the carrier transport and recombination process, their ability to deform, and, more critically, how the chemical, structural, and optoelectronic properties change under strain. This project develops critical fundamental understandings of the mechano-optoelectronic properties of the CQD-CP heterostructures by (1) investigating the chemical and structural interaction between CQD and CP and their impact on the charge carrier transport and recombination characteristics of the CQD-CP heterostructures with different interfacial chemistry; (2) understanding the changes of the key chemical, structural and optoelectronic properties under strain and elucidate the underlying mechanism. To achieve this, the research team will first utilize a unique ligands exchange strategy to construct CQD - CP heterostructures with controllable interfaces at the molecular level. The research team will then employ X-ray photoelectron and X-ray diffraction spectroscopy, transmission electron spectroscopy, steady and time-resolved optical spectroscopy, and electrical characterization, with and without applied strain, to provide insights into how structure, charge transport, and recombination are impacted by the interfacial chemistry, and how they change under strain. The research activities provide fundamental knowledge that is foundational toward the rational design of CQD-based wearable optoelectronics and unlock their potential in personal healthcare, and soft robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性可穿戴电子设备发射和检测近红外(IR)光,有望实现负担得起的非侵入性医疗保健,包括疾病的早期检测和光治疗。为了适应皮肤的自然运动,材料必须在变形或受压时保持其结构完整性和电子特性。许多在近红外中起作用的材料是刚性和脆性的,因此不能用于可穿戴设备。近红外电子新材料的发现由于缺乏对它们在应力或应变下如何表现的基本理解而受到阻碍。该项目直接解决了这一挑战。PI将合成并系统地研究将量子点的强近红外光学响应与有机半导体的吸引人的电子和物理特性相结合的复合材料。通过这些材料的无缝集成,PI将控制它们的相互作用,并研究它们的机械,光学和电子行为。通过该项目开发的分子相互作用的基本理解将使医疗保健,软机器人和其他领域的柔性电子产品取得突破。PI致力于通过加强高中学生到研究生学习的途径来扩大STEM的参与。教育工作将使高中学生学习纳米材料和纳米技术。PI将创建一个新的本科课程与互动STEM外展,并主办夏季本科生研究实习生,从而促进多样性,公平,并在STEM包容性。技术这个项目旨在更好地了解胶体量子点(CQD)固体如何应对应变,通过开发关键的结构-性质关系来揭示CQD和共轭聚合物(CP)之间分子水平的化学和结构相互作用影响所得到的异质结构的机械、光学和电子性质,重要的是这些关键性质如何响应机械变形。然而,目前尚不清楚这两种组分之间的分子水平化学和结构相互作用如何影响载流子传输和重组过程,它们的变形能力,以及更重要的是,在应变下化学,结构和光电特性如何变化。本计画将借由以下方式,发展对CQD-CP异质结构之机械-光电性质之关键性基本了解:(1)研究CQD与CP之间的化学与结构相互作用,以及其对具有不同界面化学性质之CQD-CP异质结构之电荷载子输运与复合特性之影响;(2)了解应变下关键的化学、结构和光电性质的变化,并阐明其内在机制。为了实现这一点,研究团队将首先利用独特的配体交换策略,在分子水平上构建具有可控界面的CQD - CP异质结构。然后,研究小组将采用X射线光电子和X射线衍射光谱,透射电子光谱,稳定和时间分辨光谱,以及在施加和不施加应变的情况下的电学表征,以深入了解结构,电荷传输和复合如何受到界面化学的影响,以及它们如何在应变下变化。该研究活动为基于CQD的可穿戴光电子产品的合理设计提供了基础知识,并释放了其在个人医疗保健和软机器人领域的潜力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiwen Gong其他文献

Dynamic domain walls enable ferroelectrics with GHz microwave tunability, ultralow loss
  • DOI:
    10.1557/mrs.2018.267
  • 发表时间:
    2018-11-15
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Xiwen Gong
  • 通讯作者:
    Xiwen Gong
Nano Focus: Electron diffraction enables localization of hydrogen atoms in nanocrystals
  • DOI:
    10.1557/mrs.2017.65
  • 发表时间:
    2017-04-12
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Xiwen Gong
  • 通讯作者:
    Xiwen Gong
Nano Focus: He droplet method produces narrow distributed nanoparticles as stable catalyst
  • DOI:
    10.1557/mrs.2016.254
  • 发表时间:
    2016-11-07
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Xiwen Gong
  • 通讯作者:
    Xiwen Gong
Nano Focus: IR vibrational crystallography visualizes molecular orientation on the nanoscale
  • DOI:
    10.1557/mrs.2016.283
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Xiwen Gong
  • 通讯作者:
    Xiwen Gong
Quantum Dots in Perovskites: Liquid Heteroepitaxy for Optoelectronics
  • DOI:
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiwen Gong
  • 通讯作者:
    Xiwen Gong

Xiwen Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Structure in Metal Ion-Linked Multilayer Upconversion Solar Cells
了解和控制金属离子连接多层上转换太阳能电池的结构
  • 批准号:
    2327754
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2411677
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319850
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AerialHitches: Forming and Controlling Hitches for Fully Autonomous Transportation Using Aerial Robots with Cables
空中挂钩:使用带有电缆的空中机器人形成和控制全自动运输的挂钩
  • 批准号:
    2322840
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Unravelling the light controlling switch in Cyanobacteria
解开蓝细菌中的光控制开关
  • 批准号:
    BB/Y003675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了