CAREER: Enhancing Temperature Visualization in Boiling Fluid over Finned Surfaces using Deep Learning-Enhanced Laser-Induced Fluorescence
职业:使用深度学习增强激光诱导荧光增强翅片表面沸腾流体的温度可视化
基本信息
- 批准号:2337973
- 负责人:
- 金额:$ 54.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-15 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project utilizes deep learning-assisted experimental techniques to visually investigate temperature changes in boiling fluids. Boiling heat transfer plays a pivotal role in various industries such as aviation, space exploration, electric vehicles, and industrial heat. Despite its significance, fundamental questions persist regarding boiling heat transfer, including an understanding of unique flow patterns, temperature distributions, bubble sizes, and trajectories. These challenges arise from difficulties in modeling and visualizing temperatures. Understanding temperature distributions and driving processes is crucial for the development of next-generation thermal management systems. The outcomes of this project are expected to be pertinent to industrial applications by establishing knowledge and metrology for complex heat transfer systems. One specific area of interest is enhancing the energy efficiency of heat exchangers. Cooling for data centers (that use heat exchangers) accounts for approximately 1% of all electricity produced in the US, resulting in a cost of $34 billion and 137 million metric tons of carbon dioxide annually. Therefore, exploring new opportunities in advanced temperature-metrology and analysis for heat exchanger performance improvements will have a tremendous impact on energy resources. Additionally, the project contributes to education through three tasks: (1) creating educational videos and exercises for machine learning modeling; (2) developing structured learning activities for K-12 and undergraduate students; and (3) collaborating with Intel Corporation to inspire students in non-academic research settings.Understanding temperature changes in boiling fluids over finned surfaces is currently limited. There is a lack of understanding regarding the spatiotemporal variation of temperature field in boiling fluids over finned surface, which represent a complex fundamental mode of heat transfer. The research proposes a novel temperature visualization method that integrates laser-based diagnostic tools and advanced deep learning methods to enable the measurement in boiling fluids in complex geometries. The project hypothesizes that advances in deep learning can reconstruct temperature fields in fluids from sparse measurements and correct visualization artifacts, enabling the visualization of spatiotemporal temperature variations in boiling fluids. If successful, the proposed research can significantly advance the fundamental understanding of the following thermal transport phenomena: (1) The impact of flow-structure interaction on the temperature field, thermal boundary layer, and superheated liquid layer development, (2) The mixing behavior of the thermal boundary layer during vapor evaporation, bubble departure from the surface, and rewetting of the dry spot after microlayer evaporation, and (3) The distribution of local heat transfer coefficients on finned surfaces at different phases of the boiling process. The improved understanding will contribute to the design of more effective finned heat exchangers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目利用深度学习辅助实验技术来直观地研究沸腾流体的温度变化。沸腾传热在航空、太空探索、电动汽车、工业热等各个行业中都起着举足轻重的作用。尽管它具有重要意义,但关于沸腾传热的基本问题仍然存在,包括对独特流动模式、温度分布、气泡大小和轨迹的理解。这些挑战来自于模拟和可视化温度的困难。了解温度分布和驱动过程对于下一代热管理系统的开发至关重要。该项目的成果有望通过建立复杂传热系统的知识和计量来与工业应用相关。一个特别感兴趣的领域是提高热交换器的能源效率。数据中心的冷却(使用热交换器)约占美国总发电量的1%,每年造成340亿美元的成本和1.37亿公吨的二氧化碳。因此,探索先进温度计量和分析的新机会,以改善热交换器的性能,将对能源产生巨大的影响。此外,该项目通过三项任务为教育做出贡献:(1)为机器学习建模创建教育视频和练习;(2)开展面向中小学和本科生的结构化学习活动;(3)与英特尔公司合作,在非学术研究环境中激励学生。对翅片表面沸腾流体温度变化的理解目前是有限的。翅片表面沸腾流体温度场的时空变化是一种复杂的基本传热模式,但目前对这类流体温度场的时空变化缺乏认识。该研究提出了一种新的温度可视化方法,该方法集成了基于激光的诊断工具和先进的深度学习方法,可以在复杂几何形状的沸腾流体中进行测量。该项目假设,深度学习的进步可以从稀疏测量和正确的可视化伪影中重建流体中的温度场,从而实现沸腾流体中时空温度变化的可视化。如果成功,本研究将显著推进对以下热输运现象的基本认识:(1)流-结构相互作用对温度场、热边界层和过热液层发展的影响;(2)蒸汽蒸发、气泡离开表面和微层蒸发后干点再湿润过程中热边界层的混合行为;(3)沸腾过程不同阶段翅片表面局部换热系数的分布。这将有助于设计出更有效的翅片式换热器。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beomjin Kwon其他文献
Deep learning model for rapid temperature map prediction in transient convection process using conditional generative adversarial networks
使用条件生成对抗网络快速预测瞬态对流过程温度图的深度学习模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Munku Kang;Nam Phuong Nguyen;Beomjin Kwon - 通讯作者:
Beomjin Kwon
Impact of silicon nitride thickness on the infrared sensitivity of silicon nitride–aluminum microcantilevers
- DOI:
10.1016/j.sna.2012.07.006 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:
- 作者:
Matthew R. Rosenberger;Beomjin Kwon;David G. Cahill;William P. King - 通讯作者:
William P. King
Two-phase active immersion cooling for vertically mounted electronics with interchip component-assisted bubble departure
- DOI:
10.1016/j.icheatmasstransfer.2024.107981 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Faizan Ejaz;Beomjin Kwon - 通讯作者:
Beomjin Kwon
High power density air-cooled microchannel heat exchanger
- DOI:
10.1016/j.ijheatmasstransfer.2017.11.068 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:
- 作者:
Beomjin Kwon;Nicholas I. Maniscalco;Anthony M. Jacobi;William P. King - 通讯作者:
William P. King
Designing pin fin heat sinks with restarting adjoint optimization approach
采用重启伴随优化方法设计针肋散热器
- DOI:
10.1016/j.ijheatmasstransfer.2025.126856 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:5.800
- 作者:
Nam Phuong Nguyen;Elham Maghsoudi;Scott N. Roberts;Beomjin Kwon - 通讯作者:
Beomjin Kwon
Beomjin Kwon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beomjin Kwon', 18)}}的其他基金
Collaborative Research: CDS&E: Learning Convective Heat Transfer from Mass Transfer Visualization
合作研究:CDS
- 批准号:
2053413 - 财政年份:2021
- 资助金额:
$ 54.06万 - 项目类别:
Standard Grant
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Standard Grant
Proton radiation therapy combined with immunotherapy for enhancing antitumor immune responses in pancreatic cancer murine models.
质子放射治疗与免疫治疗相结合,增强胰腺癌小鼠模型的抗肿瘤免疫反应。
- 批准号:
24K10423 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Post-COVID-19 Multicultural Community Building in Japan: Enhancing Risk Communication and Resilience among Foreign Residents
COVID-19 后日本的多元文化社区建设:加强外国居民的风险沟通和抵御能力
- 批准号:
24K15447 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancing Faculty Well-being at Liberal Arts Colleges: Individual, Contextual, Institutional, and Cultural Factors
提高文理学院教师的福祉:个人、背景、制度和文化因素
- 批准号:
24K06445 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Standard Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
- 批准号:
2401876 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 54.06万 - 项目类别:
Continuing Grant