CAREER: Single-Fidelity vs. Multi-Fidelity Computer Experiments: Unveiling the Effectiveness of Multi-Fidelity Emulation
职业:单保真度与多保真度计算机实验:揭示多保真度仿真的有效性
基本信息
- 批准号:2338018
- 负责人:
- 金额:$ 42.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computer models have become indispensable tools across diverse fields, enabling the simulation of complex phenomena and facilitating decision-making without costly real-world experiments. Traditionally, computer models are simulated using single, high-accuracy simulations, employing a high level of detail and resolution throughout. Recent advancements, however, have shifted attention towards multi-fidelity simulations, balancing computational cost and accuracy by leveraging various levels of detail and resolution in the simulation. A key question arises: is it more effective to use single-fidelity or multi-fidelity simulations? This is a question practitioners often confront when conducting computer simulations. The research aims to address this fundamental question directly, providing valuable insights for practical decision-making. By leveraging insights gained from computational cost comparisons, the research will enhance the ability to predict complex scientific phenomena accurately and has the potential to revolutionize fields such as engineering, medical science, and biology. The project contributes to outreach and diversity efforts, inspiring youth and increasing female representation in STEM research. Moreover, collaborations with diverse research groups, as well as involvement in the REU exchange program, provide opportunities to engage undergraduate students, nurturing their interest in research and encouraging them to pursue careers in STEM. Research findings will be disseminated through publications and conferences. The code developed will be shared to foster collaboration and encourage others to build upon these innovative methodologies.This research addresses the fundamental question of whether to conduct single-fidelity or multi-fidelity computer experiments by investigating the effectiveness of multi-fidelity simulations. It begins by examining the computational cost comparison between the two approaches, finding that multi-fidelity simulations, under certain conditions, can theoretically require more computational resources while achieving the same predictive ability. To mitigate the negative effects of low-fidelity simulations, a novel and flexible statistical emulator, called the Recursive Nonadditive (RNA) emulator, is proposed to leverage multi-fidelity simulations, and a sequential design scheme based on this emulator is developed, which maximizes the effectiveness by selecting inputs and fidelity levels based on a criterion that balances uncertainty reduction and computational cost. Furthermore, two novel multi-fidelity emulators, called "secure emulators," are developed, which theoretically guarantee superior predictive performance compared to single-fidelity emulators, regardless of design choices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机模型已成为各种领域中必不可少的工具,从而实现了复杂现象的模拟并促进决策,而无需昂贵的现实实验。传统上,计算机模型是使用单个高临界模拟模拟的,在整个过程中都采用了高度的细节和分辨率。然而,最近的进步将注意力转移到多保真模拟上,通过利用模拟中各种级别的细节和分辨率来平衡计算成本和准确性。出现了一个关键问题:使用单曲或多保真模拟更有效吗?进行计算机模拟时,这是从业者经常会面对的问题。该研究旨在直接解决这个基本问题,为实际决策提供宝贵的见解。通过利用从计算成本比较中获得的见解,这项研究将增强准确预测复杂的科学现象的能力,并有可能改变工程,医学和生物学等领域。该项目有助于宣传和多样性工作,激发青年并增加女性在STEM研究中的代表性。此外,与不同的研究小组的合作以及参与REU交流计划,提供了吸引本科生,培养他们对研究的兴趣并鼓励他们从事STEM职业的机会。研究发现将通过出版和会议传播。开发的代码将被共享,以促进协作并鼓励其他人以这些创新的方法为基础。这项研究解决了是否通过研究多保真模拟的有效性来进行单个前保或多门计算机实验的基本问题。首先,它检查两种方法之间的计算成本比较,发现在某些条件下,在某些条件下,多保真模拟可以在理论上需要更多的计算资源,同时具有相同的预测能力。 To mitigate the negative effects of low-fidelity simulations, a novel and flexible statistical emulator, called the Recursive Nonadditive (RNA) emulator, is proposed to leverage multi-fidelity simulations, and a sequential design scheme based on this emulator is developed, which maximizes the effectiveness by selecting inputs and fidelity levels based on a criterion that balances uncertainty reduction and computational cost.此外,开发了两个新型的多保真模拟器,称为“安全仿真器”,从理论上讲,这些模拟器与单性模拟器相比提供了卓越的预测性能,无论设计选择如何,该奖项都反映了NSF的法定任务,并且通过基金会的知识绩效和广泛的效果来评估NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chih-Li Sung其他文献
Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak
- DOI:
10.1214/22-aoas1601 - 发表时间:
2021-01 - 期刊:
- 影响因子:0
- 作者:
Chih-Li Sung - 通讯作者:
Chih-Li Sung
Chih-Li Sung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chih-Li Sung', 18)}}的其他基金
Collaborative Research: Efficient Bayesian Global Optimization with Applications to Deep Learning and Computer Experiments
协作研究:高效贝叶斯全局优化及其在深度学习和计算机实验中的应用
- 批准号:
2113407 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Continuing Grant
相似国自然基金
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
相似海外基金
Dogs as a high fidelity, high throughput model to evaluate CAR-T cell function and dysfunction
狗作为高保真、高通量模型来评估 CAR-T 细胞功能和功能障碍
- 批准号:
10314748 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Dogs as a high fidelity, high throughput model to evaluate CAR-T cell function and dysfunction
狗作为高保真、高通量模型来评估 CAR-T 细胞功能和功能障碍
- 批准号:
10474338 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Dogs as a high fidelity, high throughput model to evaluate CAR-T cell function and dysfunction
狗作为高保真、高通量模型来评估 CAR-T 细胞功能和功能障碍
- 批准号:
10684292 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Regulation and Physiological Roles of Translational Fidelity
翻译保真度的调节和生理作用
- 批准号:
10617051 - 财政年份:2020
- 资助金额:
$ 42.36万 - 项目类别:
Single Molecule Analysis of Spliceosome Catalysis and Fidelity
剪接体催化和保真度的单分子分析
- 批准号:
7570401 - 财政年份:2008
- 资助金额:
$ 42.36万 - 项目类别: