Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity

糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合

基本信息

  • 批准号:
    10279068
  • 负责人:
  • 金额:
    $ 35.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Pathogenesis of diabetic retinopathy is characterized by the appearance of morphological abnormalities in the retinal capillary vessels. Although such abnormalities are used in the clinical evaluation of the disease severity, the hemodynamic mechanisms underlying their development and progression remain unknown. These morphological abnormalities are highly localized in specific regions of the retinal vascular network, and may correlate with the local variations of the hemodynamic parameters and forces. Diabetic conditions significantly alter the biophysical properties of the blood cells, however the influence of such altered biophysical properties on the retinal hemodynamics and pathogenesis of retinopathy are not known. Existing in vivo imaging techniques have limitations in terms of the hemodynamic measurements in the topologically complex and multi- plexus retinal vasculature. Additionally, tissue hypoxia and the loss of blood flow autoregulation are pathogenic factors in retinopathy. No study exists that correlates diabetes-mediated altered biophysics of the individual blood cell to the loss of retinal tissue oxygenation and flow regulation. Our underlying hypotheses are: (i) altered biophysics of diabetic red blood cells (RBC) alone can mediate vascular abnormalities by altering the hemodynamic parameters and forces; and (ii) such changes are spatially heterogeneous across the retinal vascular network, and correlate with the focal and heterogeneous nature of vascular abnormalities. The broad objective of this project is to understand the relationship between the hemodynamics of diabetic blood cells, retinal vascular network topology, and pathogenesis of retinopathy, using a high-fidelity, predictive computational modeling study. Specific aims are: 1) To develop a multiscale computational model of the diabetic retinopathy hemodynamics taking into consideration the precise microstructural and geometric details of the 3D vascular networks as obtained from in vivo images of the human retina, and 3D deformation of every single blood cell with altered biophysical properties representing diabetic conditions. 2) To predict diabetic RBC-mediated alteration in the retinal hemodynamics, and how such changes are correlated to the formation and heterogeneity of microvascular abnormalities and vascular adaptation at different stages of progressive retinopathy. 3) To evaluate the significance of diverse cellular-scale hemodynamic pathways involved. 4) To predict the role of RBC hemodynamics on retinal hypoxia and loss of nitric oxide bioavailability as pathogenic factors in retinopathy. This study is significant and innovative because it will (i) develop the first high-fidelity, predictive computational model that combines the exact 3D geometry of ultra-large-scale and multi-plexus in silico retinal vasculature, and 3D deformation and rheology of every blood cell, (ii) provide a rheology- topology coupling mechanism as a basis of hemodynamics-mediated initiation and progression of vascular abnormalities, (ii) directly model heterotypic individual cell-cell and cell-endothelium interactions, and (iv) couple individual RBC transient deformation with blood and retinal tissue gas transport.
糖尿病性视网膜病变的发病机制的特征在于在视网膜中出现形态学异常。 视网膜毛细血管尽管这些异常用于疾病严重程度的临床评价, 其发展和进展的血液动力学机制仍然未知。这些 形态学异常高度局限于视网膜血管网的特定区域, 与血流动力学参数和力的局部变化相关。糖尿病症状显著 改变血细胞的生物物理性质,然而,这种改变的生物物理性质的影响 对视网膜血流动力学和视网膜病变的发病机制尚不清楚。现有体内成像 技术在拓扑学复杂和多通道的血流动力学测量方面具有局限性, 视网膜血管丛此外,组织缺氧和血流自动调节的丧失是致病的 视网膜病变的病因没有研究表明糖尿病介导的个体生物物理学改变 血细胞的视网膜组织氧合和流动调节的损失。我们的基本假设是:(一) 糖尿病红细胞(RBC)的生物物理学改变单独可以通过改变 血流动力学参数和力;以及(ii)这种变化在视网膜上是空间异质的。 血管网络,并与血管异常的局灶性和异质性相关。广大 本项目的目的是了解糖尿病血细胞的血流动力学之间的关系, 视网膜血管网络拓扑结构和视网膜病变的发病机制,使用高保真,预测 计算机模拟研究具体目标是:1)开发一个多尺度的计算模型, 糖尿病视网膜病变血流动力学考虑到精确的微观结构和几何细节 的3D血管网络,如从人视网膜的体内图像获得的,以及每个血管网络的3D变形。 具有代表糖尿病状况的改变的生物物理特性的单个血细胞。2)预测糖尿病 RBC介导的视网膜血流动力学改变,以及这些变化如何与视网膜血管形成相关。 微血管异常和血管适应在不同阶段的进展性 视网膜病变3)评价不同细胞尺度血流动力学通路的意义。4)到 预测红细胞血流动力学对视网膜缺氧和一氧化氮生物利用度丧失的作用, 视网膜病变的病因这项研究是有意义的和创新的,因为它将(i)开发第一个高保真, 预测计算模型,结合了超大规模和多丛的精确3D几何形状, 硅视网膜脉管系统和每个血细胞的3D变形和流变学,(ii)提供流变学- 拓扑耦合机制作为血流动力学介导的血管起始和进展的基础 (ii)直接模拟异型个体细胞-细胞和细胞-内皮相互作用,和(iv) 将个体RBC瞬时变形与血液和视网膜组织气体运输耦合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prosenjit Bagchi其他文献

Prosenjit Bagchi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prosenjit Bagchi', 18)}}的其他基金

Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
  • 批准号:
    10688753
  • 财政年份:
    2021
  • 资助金额:
    $ 35.13万
  • 项目类别:

相似国自然基金

基于语义理解的中文地址匹配关键技术研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于众源地址数据的标准地址集智能化构建方法研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向空间语义建模与检索的城市地址图模型研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
新型智慧城市地名地址数据融合治理关键技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于SDN的动目标防御网络关键技术研究
  • 批准号:
    61702535
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.13万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了