CAREER: A Platform for Per-Packet AI using Heterogeneous Data Planes
职业:使用异构数据平面的每数据包人工智能平台
基本信息
- 批准号:2338034
- 负责人:
- 金额:$ 55.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-15 至 2029-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern cyberinfrastructure (CI) powers many aspects of our day-to-day life (such as healthcare, finance, electricity, and communication). And, moving forward, our reliance on this infrastructure will grow even more as new use cases (e.g., augmented/virtual reality, autonomous transportation, and remote surgery) and users (e.g., self-driving cars and IoT devices) enter the technological landscape. To meet the strict security and performance requirements of this evolving landscape, the cloud datacenter networks and systems, which form the backbone of CI, must adapt and allocate their (heterogeneous) resources quickly and efficiently. Doing so, however, demands that (compute-intensive) network management and control decisions are applied per packet at line rate in a fast-and-intelligent way. Unfortunately, the dominant solutions available today are neither fast nor intelligent enough to meet these requirements.This proposal aims to bridge this gap between speed and intelligence by developing a holistic platform that allows datacenter operators to execute per-packet AI-driven decisions directly within the network at line rate. The proposal lays out the research across three progressively connected thrusts: (1) designing novel data-plane architectures for per-packet AI, (2) implementing high-level, declarative frameworks for expressing AI objectives (and models), and, finally, (3) developing a suite of per-packet AI applications to build confidence in the utility of the proposed platform. It is a radically new paradigm that converges multiple disciplines (machine learning, networking, and architecture), thus opening pathways for machine-learning researchers and architects—with their cross-disciplinary knowledge—to work alongside network designers to realize the full potential of per-packet AI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代网络基础设施(CI)为我们日常生活的许多方面(例如医疗保健,金融,电力和沟通)提供了支持。而且,向前迈进,随着新用例(例如,增强/虚拟现实,自动运输和远程手术)以及用户(例如,自动驾驶汽车和物联网设备)进入技术环境,我们对这种基础设施的责任将更加增长。为了满足这种不断发展的景观的严格安全性和性能要求,构成CI骨干的云数据中心网络和系统必须快速有效地适应并分配其(异质)资源。但是,这样做要求(计算密集型)网络管理和控制决策以快速和智能的方式以线路速率应用。不幸的是,当今可用的主要解决方案要么快,要么足够智能满足这些要求。该提案旨在通过开发一个整体平台来弥合速度和情报之间的差距,该平台使数据中心运营商可以按线路直接在网络中直接执行AI-AI-drion驱动决策。该提案列出了三个逐渐连接的推力的研究:(1)设计新颖的数据平面体系结构,用于每包AI,(2)实施用于表达AI目标(和型号)的高级,声明性的框架,以及(最后,(3),(3)为每套AI提供信心,以建立一个构建itsutity Plattertility of the Platferal of Spections of Spections of Spectife ofsuts of Spectssed的提议。这是一个巨大的新范式,它融合了多个学科(机器学习,网络和建筑),因此为机器学习的研究人员和建筑师(凭借其跨学科知识)开辟了途径,可以与网络设计师一起工作,以实现每包AI的全部潜力,以反映了NSF的法定任务和范围的范围,并在宽广的范围内进行了评估。 标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Shahbaz其他文献
A Journey towards Improved Quality of Life of a Typist with Retinitis Pigmintosa
改善患有色素性视网膜炎的打字员的生活质量之旅
- DOI:
10.58397/ashkmdc.v27i02.523 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Malab Sana Balouch;Muhammad Shahbaz;Mohammad Moaz Balouch - 通讯作者:
Mohammad Moaz Balouch
Convergence and club convergence of CO2 emissions at state levels: A nonlinear analysis of the USA
州级二氧化碳排放量的收敛和俱乐部收敛:美国的非线性分析
- DOI:
10.1016/j.jclepro.2020.125093 - 发表时间:
2020 - 期刊:
- 影响因子:11.1
- 作者:
A. Tiwari;M. Nasir;Muhammad Shahbaz;I. Raheem - 通讯作者:
I. Raheem
On the validity of the Keynesian Absolute Income hypothesis in Pakistan: An ARDL bounds testing approach
- DOI:
10.1016/j.econmod.2013.07.018 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:
- 作者:
Muhammad Shahbaz;Kishwar Nawaz;Mohamed Arouri;Frédéric Teulon;Gazi Salah Uddin - 通讯作者:
Gazi Salah Uddin
Electrochemical investigation of copper 1D conductive polymer for hybrid supercapacitor applications
- DOI:
10.1016/j.est.2024.114058 - 发表时间:
2024-11-20 - 期刊:
- 影响因子:
- 作者:
Javed Hussain Shah;Shahzad Sharif;Muhammad Shahbaz;Maham Saeed;Ayesha Shahzad;Sidra Farid;Sundas Shahzad;Shabbir Muhammad - 通讯作者:
Shabbir Muhammad
Magnetic field effect on mechanism and syngas products of microalgae pyrolysis with activated carbon catalysts
- DOI:
10.1016/j.fuel.2024.133617 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Ahmad Yusril Aminullah;Sukarni Sukarni;Retno Wulandari;Muhammad Shahbaz - 通讯作者:
Muhammad Shahbaz
Muhammad Shahbaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muhammad Shahbaz', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
- 批准号:
2211381 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
相似国自然基金
社会效益与效率兼顾的共享出行平台机制设计与治理对策
- 批准号:72304021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在线医疗平台设计对医疗服务绩效的影响机制研究:多维信息披露视角
- 批准号:72302095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集成在线学习,弱监督深度学习和动态交互的三维医学图像分割平台
- 批准号:62301326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
差异化视角下零售平台的消费信贷与运营决策研究
- 批准号:72301260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
虚假信息跨平台传播模型和关键路径管控方法研究
- 批准号:72374056
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
An innovative platform that uses bespoke algorithms to accurately match candidates to jobs, rewarding them and the referrer, and saving employers up to 66% per hire.
%20innovative%20platform%20that%20使用%20bespoke%20algorithms%20to%20accurately%20match%20candidates%20to%20jobs,%20rewarding%20them%20and%20the%20referrer,%20and%20 saving%20employers%20up%20to%2066%
- 批准号:
10094228 - 财政年份:2024
- 资助金额:
$ 55.54万 - 项目类别:
Collaborative R&D
Three-dimensional fluorescence imaging flow cytometry at up to million frames per second
每秒高达百万帧的三维荧光成像流式细胞术
- 批准号:
10568627 - 财政年份:2023
- 资助金额:
$ 55.54万 - 项目类别:
An innovative SaaS payment-orchestration platform using code-free technology that could save SMEs 40 hours of integration time per payment method
采用无代码技术的创新 SaaS 支付编排平台,可为中小企业节省每种支付方式 40 小时的集成时间
- 批准号:
10032905 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Collaborative R&D
An innovative software platform using AI that could reduce manufacturers’ material, energy and packaging wastage by over 60% per year
%20创新%20软件%20平台%20使用%20AI%20,%20可以%20减少%20制造商%20材料,%20能源%20和%20包装%20浪费%20by%20超过%2060%%20每%20年
- 批准号:
10023407 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Collaborative R&D
Collaborative Research: Environmental Sensing of Per and Polyfluoroalkyl Substances in Water Utilizing a Microelectrode Sensor Array Platform and Machine Learning Enabled Detection
合作研究:利用微电极传感器阵列平台和机器学习检测对水中的全氟烷基和多氟烷基物质进行环境传感
- 批准号:
2149235 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant