CAREER: Fundamental phenomena in magnon condensates
职业:磁振子凝聚体的基本现象
基本信息
- 批准号:2338060
- 负责人:
- 金额:$ 73.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-15 至 2029-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract:Bosons are particles of integer spin that allow for the fundamental quantum effect of Bose-Einstein Condensation (BEC), which manifests as the spontaneous formation of a macroscopic coherent quantum state in an otherwise incoherent multi-particle system. The project will improve understanding of the BEC phenomenon in magnetic quasiparticles – magnons. This work may have a transformative effect on the fields of quantum information science, solid-state physics, and modern magnetism, as well as help maintain US leadership in the area of quantum information science and technology. This CAREER project explores ferromagnetic structures to understand magnon BEC properties and interactions with a dense magnon gas existing alongside it using state-of-the-art nanofabrication, optical, and microwave characterization techniques. The educational component of the project integrates contemporary research themes into existing graduate and undergraduate courses, creates new quantum physics and quantum information science lab courses, provides access to scientific developments to a broad community, and increases the number of students in STEM through the organization of scientific tournaments.Technical abstract:Despite many achievements in the field of magnon gases and condensates, like the observation of magnon supercurrents, Bogoliubov waves, Josephson effect, and second sound, there are many intriguing fundamental questions still open. One of them is how these phenomena are affected by boundaries or geometrical confinement, and what are the critical sizes of the system to support magnon BEC in ferromagnetic materials. The project combines state-of-the-art micro- and nano-structuring with optical Brillouin light scattering spectroscopy and introduces optical heating techniques at room as well as cryogenic temperatures. The project's aims are: (i) Experimentally observe and compare magnon BEC dynamics in conventional 3D, quasi-2D, and quasi-1D structures; (ii) Create a persistent condensed phase and determine its areas of existence; (ii) Study properties of magnon BEC in systems with periodic boundary conditions (rings); (iii) Create a complete joint model of magnon second sound and Bogoliubov waves in continuous and confined samples; (iv) Experimental observe and study magnon thermodynamic lasing effect. The project supports the training of undergraduate and graduate students in advanced optical spectroscopy techniques, cryogenics, and nanofabrication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:玻色子是整数自旋的粒子,它允许玻色-爱因斯坦凝聚(BEC)的基本量子效应,这表现为在其他非相干多粒子系统中自发形成宏观相干量子态。该项目将提高对磁性准粒子-磁子中的BEC现象的理解。这项工作可能会对量子信息科学、固态物理和现代磁学领域产生革命性的影响,并有助于保持美国在量子信息科学和技术领域的领先地位。这个职业项目利用最先进的纳米制造、光学和微波表征技术探索铁磁结构,以了解磁振子BEC的性质以及与其周围存在的致密磁振子气体的相互作用。该项目的教育部分将当代研究主题融入现有的研究生和本科课程,创建新的量子物理和量子信息科学实验室课程,为广大社区提供了解科学发展的途径,并通过组织科学锦标赛增加STEM的学生人数。技术摘要:尽管在磁振子气体和凝聚体领域取得了许多成就,如磁振子超流、Bogoliubov波、约瑟夫森效应和第二声,但仍有许多有趣的基本问题尚未解决。其中之一是这些现象如何受到边界或几何约束的影响,以及在铁磁材料中支持磁振子BEC的系统的临界尺寸是多少。该项目将最先进的微纳米结构与光学布里渊光散射光谱相结合,并引入了室温和低温下的光学加热技术。该项目的目标是:(I)实验观察和比较常规3D、准2D和准1D结构中的磁振子BEC动力学;(Ii)创建持久凝聚相并确定其存在区域;(Ii)研究具有周期边界条件的系统(环)中的磁振子BEC的性质;(Iii)在连续和受限样品中建立磁振子第二声和Bogoliubov波的完整联合模型;(Iv)实验观察和研究磁振子热力学激光效应。该项目支持对本科生和研究生进行先进的光学光谱学技术、低温和纳米制造方面的培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmytro Bozhko其他文献
Dmytro Bozhko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmytro Bozhko', 18)}}的其他基金
ERI: Hybrid magnonic optics for data processing applications
ERI:用于数据处理应用的混合磁振光学
- 批准号:
2138236 - 财政年份:2022
- 资助金额:
$ 73.84万 - 项目类别:
Standard Grant
相似海外基金
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
- 批准号:
2408972 - 财政年份:2023
- 资助金额:
$ 73.84万 - 项目类别:
Standard Grant
Fundamental and new physics phenomena in particle physics
粒子物理学中的基本和新物理现象
- 批准号:
2691675 - 财政年份:2022
- 资助金额:
$ 73.84万 - 项目类别:
Studentship
CAREER: Ultrafast Localized Plasmas in Dense Fluids: From Fundamental Phase-Change Phenomena and Diagnostics to Efficient Heat and Mass Transport
职业:稠密流体中的超快局域等离子体:从基本相变现象和诊断到高效的热和质量传输
- 批准号:
2048125 - 财政年份:2021
- 资助金额:
$ 73.84万 - 项目类别:
Continuing Grant
Violation of fundamental symmetries in atomic phenomena
原子现象中基本对称性的破坏
- 批准号:
DP200100150 - 财政年份:2020
- 资助金额:
$ 73.84万 - 项目类别:
Discovery Projects
Fundamental study on transport phenomena on jets toward their control by streamwise vortices
流向涡控制射流输运现象的基础研究
- 批准号:
20K04264 - 财政年份:2020
- 资助金额:
$ 73.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental study of discharge phenomena in micrometer-scale gap on dielectrics
电介质微米级间隙放电现象的基础研究
- 批准号:
20K04447 - 财政年份:2020
- 资助金额:
$ 73.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
- 批准号:
1915849 - 财政年份:2019
- 资助金额:
$ 73.84万 - 项目类别:
Standard Grant
Discovery and Fundamental Investigation of Emergent Phenomena in Novel 2D Magnets
新型二维磁体中涌现现象的发现和基础研究
- 批准号:
1904716 - 财政年份:2019
- 资助金额:
$ 73.84万 - 项目类别:
Continuing Grant
HIgh-precision numerical analysis of fluid phenomena by the method of fundamental solutions
利用基本解法对流体现象进行高精度数值分析
- 批准号:
18K13455 - 财政年份:2018
- 资助金额:
$ 73.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: From Fundamental Interactions to Emergent Phenomena: Geometrical Aspects of Nuclear Dynamics
职业:从基本相互作用到涌现现象:核动力学的几何方面
- 批准号:
1654379 - 财政年份:2017
- 资助金额:
$ 73.84万 - 项目类别:
Continuing Grant