CAREER: Ultrafast Localized Plasmas in Dense Fluids: From Fundamental Phase-Change Phenomena and Diagnostics to Efficient Heat and Mass Transport

职业:稠密流体中的超快局域等离子体:从基本相变现象和诊断到高效的热和质量传输

基本信息

  • 批准号:
    2048125
  • 负责人:
  • 金额:
    $ 53.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Energy and water are the interconnected foundations of our global society. Central to most thermo-electric energy conversion and water purification technologies are liquid-vapor phase-change processes such as boiling, evaporation and condensation. To improve these technologies that convert thermal energy to electrical energy or provide clean water, phase-change phenomena must be both efficient and controllable. The goal of this CAREER project is to integrate research and education around the use of ultrafast (20-100 nanoseconds) and fast (0.1-10 microseconds) pulsed plasma discharges in liquids and vapors to probe, manipulate or tune and enhance heat and mass transfer processes during liquid-vapor phase change encountered in boiling and desalination processes. Plasma, one of the four fundamental states of matter, is an ionized and highly energetic state of matter with unique physical and optical properties (consider, for example, lightning). By controlling the duration of a plasma in a dense fluid, such as liquid water, losses via heat transfer and electrolysis may be minimized, and the impact of the plasma on the fluid may be controlled. In this project, the plasma will be tailored to the applications. Ultrafast or non-thermal pulsed plasmas will be sued to measure temperature and species or locally perturb a fluid during boiling, and fast or thermal pulsed plasmas will be used to locally alter the state of the fluid in desalination processes. The project will also leverage this cross-disciplinary approach to convey the importance of efficient energy conversion and water resource utilization to a diverse group of students, ranging from grades K-8 to the university level, in the Bryan-College Station area of Texas. The goals of these efforts are to engage, encourage, and support the pursuit of science-related higher education and to train informed, current/future consumers of our energy and water resources.The intellectual focus of this project is the interaction between extremely short timescale pulsed non-thermal and thermal plasma discharges in dense fluids and the thermodynamic phase transitions that result from rapid energy deposition in the fluid. These plasma-fluid interactions will be experimentally characterized to fundamentally study highly transient liquid-vapor-solid phase-change and the physicochemical processes resulting from the controlled energy/timescale of pulsed plasma discharges in fluids. The fundamental studies will be leveraged to develop novel optical diagnostic techniques to measure species concentration and vapor phase temperature in situ during phase-change heat transfer using a non-thermal plasma as the probe. The findings will also be used to tune and enhance heat/mass transfer processes during boiling heat transfer and water purification through on-demand and localized bubble nucleation via a non-thermal plasma and salt-water separations through a thermal plasma. The plasma-fluid interaction framework will be leveraged as a novel vehicle to engage and introduce a diverse group of early-age students to energy conversion and clean water technologies and to spark their interest in science and engineering higher-education. The knowledge resulting from these research activities will also be actively integrated into thermal-fluid sciences curricula at the undergraduate and graduate levels to introduce and train students in state-of-the-art energy conversion and water purification technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源和水是我们全球社会相互联系的基础。大多数热电能量转换和水净化技术的核心是液-汽相变过程,如沸腾、蒸发和冷凝。为了改进这些将热能转换为电能或提供清洁水的技术,相变现象必须既有效又可控。这个职业项目的目标是结合研究和教育,利用液体和蒸气中的超快(20-100纳秒)和快速(0.1-10微秒)脉冲等离子体放电,以探测、操纵或调整并增强沸腾和海水淡化过程中遇到的液-汽相变过程中的热量和质量传递过程。等离子体是物质的四种基本状态之一,是一种具有独特物理和光学性质的电离和高能物质状态(例如,考虑闪电)。通过控制等离子体在稠密流体(如液态水)中的持续时间,可以最大限度地减少通过传热和电解造成的损失,并且可以控制等离子体对流体的影响。在这个项目中,等离子体将根据应用进行量身定做。超快或非热脉冲等离子体将被用来测量沸腾过程中的温度和物质或局部扰动流体,快速或热脉冲等离子体将被用来在海水淡化过程中局部改变流体的状态。该项目还将利用这种跨学科的方法,向德克萨斯州布赖恩学院站地区从K-8年级到大学水平的不同学生群体传达高效能源转换和水资源利用的重要性。这些努力的目标是参与、鼓励和支持追求与科学相关的高等教育,并培训知情的、当前/未来的能源和水资源消费者。该项目的智力重点是在稠密流体中极短时间尺度的脉冲非热和热等离子体放电与由于流体中快速能量沉积而产生的热力学相变之间的相互作用。这些等离子体-流体相互作用的实验特征将被用来从根本上研究高度瞬变的液-气-固相变以及由流体中脉冲等离子体放电的能量/时间尺度引起的物理化学过程。这些基础研究将被用来开发新的光学诊断技术,利用非热等离子体作为探针,在相变换热过程中原位测量物种浓度和汽相温度。这些发现还将用于调整和加强沸腾换热和水净化过程中的传热/传质过程,方法是通过非热等离子体按需和局部气泡成核,以及通过热等离子体进行盐水分离。等离子体-流体相互作用框架将被用作一种新的工具,让不同的早期学生群体参与并介绍能源转换和清洁水技术,并激发他们对科学和工程高等教育的兴趣。这些研究活动产生的知识也将被积极地整合到本科和研究生水平的热-流体科学课程中,向学生介绍和培训最先进的能量转换和水净化技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dion Antao其他文献

Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites
  • DOI:
    10.1016/j.matt.2024.06.038
  • 发表时间:
    2024-10-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sourav Chakravarty;Wenting Hinz;Dion Antao;Patrick J. Shamberger
  • 通讯作者:
    Patrick J. Shamberger
Numerical Investigation of the Effect of Pre-induced Cracks on Hard Rock Cutting Using Finite Element Analysis
  • DOI:
    10.1007/s00603-024-03990-8
  • 发表时间:
    2024-06-11
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Aamer A. Kazi;Dion Antao;David Staack;Bruce L. Tai
  • 通讯作者:
    Bruce L. Tai

Dion Antao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
  • 批准号:
    2340570
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Continuing Grant
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
  • 批准号:
    DP240103352
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Discovery Projects
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
  • 批准号:
    MR/X034615/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Fellowship
Ultrafast Infrared Spectroscopy Facility
超快红外光谱设备
  • 批准号:
    LE240100004
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Ultrafast Gripping and Release Mechanisms in Slingshot Spider Legs
RII Track-4:NSF:弹弓蜘蛛腿中的超快抓取和释放机制
  • 批准号:
    2327439
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Standard Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Research Grant
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
  • 批准号:
    ST/Y510002/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Research Grant
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
  • 批准号:
    2308860
  • 财政年份:
    2023
  • 资助金额:
    $ 53.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了