EAGER: Preserving Privacy in the Use of Digital Currencies
EAGER:在使用数字货币时保护隐私
基本信息
- 批准号:2338198
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this EAGER project will be on the $3 trillion digital asset market. The project will consider whether new technologies can afford a consumer or business greater privacy in a digital currency payment in order to support the development of this rapidly growing market. The proosed work includes core software and infrastructure development that balances users’ preferences with regulatory requirements and strives to build a more efficient digital payment system. Through collaborative, multi-disciplinary technical research, the project will evaluate digital currency design choices under different assumptions and requirements, evaluate tradeoffs, and ultimately learn how digital currency systems can be designed to best advance privacy, user agency, innovation, and financial equity. The latter objective includes improved financial access for low income and other vulnerable populations, an important global challenge. Because the project intends to release research papers and code, this work may catalyze others’ efforts in the public and private sectors to build on our research. This work will thereby provide critical insight for central bankers, policymakers, and the financial services industry as they contemplate the design and potential issuance of digital assets for use in the economy.This EAGER project proposes to preserve privacy in the use of a central bank digital currency (CBDC). The project will estimate the speed and storage implications of cryptographic approaches including pseudonymization, zero-knowledge proofs, and private information retrieval, to limit the information that each provider sees about participants in a transaction while complying with regulation. The test platform will be on OpenCBDC, a payments model in which the central transaction processor authenticates and stores unspent funds (called unspent transaction outputs, or UTXO) as cryptographic hashes. The project will address one of the most latency-intensive parts of a privacy-preserving design, namely range proof verification, using two architectures. One is batch proof creation, in which the prover must show that multiple values fall below a specified range. The second is batch proof verification, in which the verifier considers whether multiple proofs are all valid. This project presents high risks because it is unknown whether this technology can safeguard privacy adequately, at scale, and in a manner that is sensitive to legal, regulatory, and political concerns. It presents potentially high returns because demonstrating that well designed digital money can safeguard privacy at a level similar to cash could influence the design of payments instruments for decades.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EAGER项目更广泛的影响/商业潜力将是3万亿美元的数字资产市场。该项目将考虑新技术是否可以在数字货币支付中为消费者或企业提供更大的隐私,以支持这个快速增长的市场的发展。这项工作包括核心软件和基础设施的开发,以平衡用户的偏好与监管要求,并努力建立一个更有效的数字支付系统。通过协作、多学科的技术研究,该项目将在不同的假设和要求下评估数字货币设计选择,评估权衡,并最终了解如何设计数字货币系统,以最好地促进隐私、用户代理、创新和财务公平。后一个目标包括改善低收入和其他弱势群体获得金融服务的机会,这是一项重要的全球挑战。由于该项目旨在发布研究论文和代码,因此这项工作可能会促进公共和私营部门的其他人在我们的研究基础上的努力。因此,这项工作将为中央银行家,政策制定者和金融服务行业提供关键的洞察力,因为他们正在考虑设计和潜在的数字资产发行,以用于经济。EAGER项目建议在使用中央银行数字货币(CBDC)时保护隐私。该项目将评估加密方法的速度和存储影响,包括匿名化、零知识证明和私有信息检索,以限制每个提供商在遵守法规的同时看到的有关交易参与者的信息。测试平台将基于OpenCBDC,这是一种支付模型,中央交易处理器将未使用的资金(称为未使用的交易输出或UTXO)作为加密哈希进行验证和存储。该项目将使用两种架构解决隐私保护设计中延迟最密集的部分之一,即范围证明验证。一种是批量证明创建,其中证明者必须显示多个值低于指定范围。第二种是批量证明验证,验证者考虑多个证明是否全部有效。该项目具有高风险,因为尚不清楚该技术是否能够充分保护隐私,大规模保护隐私,以及对法律的、监管和政治问题敏感的方式。它具有潜在的高回报,因为证明设计良好的数字货币可以在类似于现金的水平上保护隐私,可能会影响支付工具的设计数十年。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neha Narula其他文献
Distributed query execution on a replicated and partitioned database
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Neha Narula - 通讯作者:
Neha Narula
Double-Spend Counterattacks: Threat of Retaliation in Proof-of-Work Systems
双花反击:工作量证明系统中的报复威胁
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Daniel J. Moroz;Daniel J. Aronoff;Neha Narula;D. Parkes - 通讯作者:
D. Parkes
Intrusion recovery for database-backed web applications
数据库支持的 Web 应用程序的入侵恢复
- DOI:
10.1145/2043556.2043567 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ramesh Chandra;Taesoo Kim;Meelap Shah;Neha Narula;Nickolai Zeldovich - 通讯作者:
Nickolai Zeldovich
Executing Web Application Queries on a Partitioned Database
在分区数据库上执行 Web 应用程序查询
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Neha Narula;R. Morris - 通讯作者:
R. Morris
Cryptanalysis of Curl-P and Other Attacks on the IOTA Cryptocurrency
针对 IOTA 加密货币的 Curl-P 和其他攻击的密码分析
- DOI:
10.46586/tosc.v2020.i3.367-391 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
E. Heilman;Neha Narula;Garrett Tanzer;James Lovejoy;Michael Colavita;M. Virza;Tadge Dryja - 通讯作者:
Tadge Dryja
Neha Narula的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
EAGER: Privacy Preserving Synthetic Graph Generation for System Provenance
EAGER:用于系统起源的隐私保护合成图生成
- 批准号:
2331424 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2335624 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning
协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习
- 批准号:
2140411 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning
协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习
- 批准号:
2140477 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Privacy-Preserving Convolutional Neural Network for Cooperative Perception in Vehicular Edge Systems
EAGER:SaTC:用于车辆边缘系统中协作感知的隐私保护卷积神经网络
- 批准号:
2037982 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2039408 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2039434 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2039542 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy-Preserving Mobile Data Collection for Social and Behavioral Research
EAGER:SaTC:早期跨学科合作:用于社会和行为研究的隐私保护移动数据收集
- 批准号:
1915828 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy-Preserving Mobile Data Collection for Social and Behavioral Research
EAGER:SaTC:早期跨学科合作:用于社会和行为研究的隐私保护移动数据收集
- 批准号:
1951430 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant