EAGER: SaTC: Privacy-Preserving Convolutional Neural Network for Cooperative Perception in Vehicular Edge Systems
EAGER:SaTC:用于车辆边缘系统中协作感知的隐私保护卷积神经网络
基本信息
- 批准号:2037982
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cooperative perception enables vehicles to exchange sensor data among each other to achieve collaborative object detection and classification, which is extremely useful to enhance autonomous vehicles' safety as they frequently suffer from blind spots and/or occlusions. Without proper measures in place for data protection, however, very few vehicles are likely to share their sensor data, due to the concerns on potential privacy leakage. A vehicle can encrypt its sensor data before sharing it with others, however, data encryption only protects data security during transmission, i.e., a receiving vehicle can still access private and sensitive information after it decrypts the data. To address this issue, a privacy-preserving convolutional neural network (CNN) is designed so that encrypted sensor data generated by vehicles can be fused and processed to produce ciphertext-based object detection results. Although a receiving vehicle obtains meaningful object detection results from received ciphertexts, it has no means to recover the original data, thus protecting the privacy of data shared from other vehicles. The proposed technique is a generic solution that can be extended to offer data privacy protection for other machine learning methods. This project will be transformative because it will enable vehicles to securely share useful sensor data between each other. Such an advance can be extremely beneficial for extending the line of sight and field of view of autonomous vehicles, which secures the public safety and advances smart transportation and national prosperity. This project offers a wide variety of research activities, ranging from CNN analysis, security algorithm design, and hardware programming. The investigators will actively engage students with various backgrounds in this project. Special efforts will be made to increase the participation of underrepresented student researchers. A workshop on Connected and Autonomous Vehicles will be organized annually to promote the research outcomes from this project to the industry and research communities and benefit society.The goal of this project is to understand the security and privacy challenges in achieving cooperative perception among autonomous vehicles, and then design an effective and efficient privacy-preserving CNN for processing encrypted sensor data, shared from multiple vehicles. Leveraging the additive secret sharing technique, sensor data is first randomly split and encrypted into two ciphertexts, and then processed in the encrypted format by two non-colluding edge servers. To process the encrypted data, edge servers make use of a privacy-preserving CNN model that securely implements all layers in the original CNN, including the secure convolutional layer, secure activation layer, secure pooling layer, secure region proposal network layer, and secure full-connection layer. As an edge server possesses only a partial view of the sensor data, sensitive information contained in the data is protected. To optimize the privacy-preserving CNN model, cross-layer optimization and field programmable gate arrays (FPGA)-based acceleration techniques are designed to increase the speed of object detection and classification while keeping the energy consumption low. The proposed system will serve as a convincing proof-of-concept for data privacy protection using CNNs, thus opening the door to widespread adoption of privacy-preserving CNN in processing sensor data. The source code and the privacy-preserving CNN model, along with its training and testing datasets, will be made publicly available, serving as a catalyst for enabling innovative research on data privacy protection in vehicular edge systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
协作感知使车辆能够相互交换传感器数据,以实现协作对象检测和分类,这对于增强自动驾驶车辆的安全性非常有用,因为它们经常遭受盲点和/或遮挡。然而,如果没有适当的数据保护措施,由于担心潜在的隐私泄露,很少有车辆可能分享其传感器数据。车辆可以在与他人共享之前对其传感器数据进行加密,然而,数据加密仅在传输期间保护数据安全性,即,接收车辆在解密数据之后仍然可以访问私有和敏感信息。为了解决这个问题,设计了一种保护隐私的卷积神经网络(CNN),以便可以融合和处理车辆生成的加密传感器数据,以产生基于密文的对象检测结果。虽然接收车辆从接收到的密文中获得有意义的对象检测结果,但它无法恢复原始数据,从而保护了与其他车辆共享的数据的隐私。该技术是一种通用的解决方案,可以扩展为其他机器学习方法提供数据隐私保护。该项目将具有变革性,因为它将使车辆能够在彼此之间安全地共享有用的传感器数据。这种进步对于扩大自动驾驶汽车的视线和视野非常有益,从而确保公共安全,促进智能交通和国家繁荣。该项目提供了各种各样的研究活动,从CNN分析,安全算法设计和硬件编程。研究人员将积极吸引具有各种背景的学生参与该项目。将作出特别努力,增加代表性不足的学生研究人员的参与。每年举办一次关于互联与自动驾驶汽车的研讨会,将该项目的研究成果推广到工业和研究界,造福社会。该项目的目标是了解实现自动驾驶汽车之间的合作感知的安全和隐私挑战,然后设计一个有效和高效的隐私保护CNN来处理多辆汽车共享的加密传感器数据。利用加性秘密共享技术,传感器数据首先被随机分割并加密成两个密文,然后由两个非合谋的边缘服务器以加密格式进行处理。为了处理加密的数据,边缘服务器使用保护隐私的CNN模型,该模型安全地实现了原始CNN中的所有层,包括安全卷积层、安全激活层、安全池化层、安全区域提议网络层和安全全连接层。由于边缘服务器仅拥有传感器数据的部分视图,因此数据中包含的敏感信息受到保护。为了优化隐私保护CNN模型,设计了跨层优化和基于现场可编程门阵列(FPGA)的加速技术,以提高目标检测和分类的速度,同时保持低能耗。拟议的系统将作为使用CNN进行数据隐私保护的令人信服的概念验证,从而为在处理传感器数据时广泛采用隐私保护CNN打开了大门。该项目的源代码和隐私保护CNN模型,以及沿着的训练和测试数据集将被公开,作为推动车辆边缘系统数据隐私保护创新研究的催化剂。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MLCNN: Cross-Layer Cooperative Optimization and Accelerator Architecture for Speeding Up Deep Learning Applications
MLCNN:用于加速深度学习应用的跨层协作优化和加速器架构
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Beilei Jiang, Xianwei Cheng
- 通讯作者:Beilei Jiang, Xianwei Cheng
APCNN: Explore Multi-Layer Cooperation for CNN Optimization and Acceleration on FPGA
APCNN:探索多层合作在 FPGA 上实现 CNN 优化和加速
- DOI:10.1145/3431920.3439461
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jiang, Beilei;Cheng, Xianwei;Tang, Sihai;Ma, Xu;Gu, Zhaochen;Zhao, Hui;Fu, Song
- 通讯作者:Fu, Song
Distributed Data-Sharing Consensus in Cooperative Perception of Autonomous Vehicles
- DOI:10.1109/icdcs54860.2022.00119
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Chenxi Qiu;Sourabh Yadav;A. Squicciarini;Qing Yang;Song Fu;Juanjuan Zhao;Chengzhong Xu
- 通讯作者:Chenxi Qiu;Sourabh Yadav;A. Squicciarini;Qing Yang;Song Fu;Juanjuan Zhao;Chengzhong Xu
Privacy-Preserving Object Detection with Secure Convolutional Neural Networks for Vehicular Edge Computing
使用用于车辆边缘计算的安全卷积神经网络进行隐私保护对象检测
- DOI:10.3390/fi14110316
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Bai, Tianyu;Fu, Song;Yang, Qing
- 通讯作者:Yang, Qing
PlateGuard: License Plate Privacy Protection for Internet of Vehicles
PlateGuard:车联网车牌隐私保护
- DOI:10.1109/metrocad51599.2021.00015
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nutt, Michael;Yang, Qing;Fu, Song
- 通讯作者:Fu, Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Yang其他文献
Performance of sludge settling property under nitrite existing conditions
亚硝酸盐存在条件下污泥沉降性能表现
- DOI:
10.1080/09593330.2015.1116496 - 发表时间:
2016-01 - 期刊:
- 影响因子:2.8
- 作者:
Xiong Yang;Yongzhen Peng;Jichen Song;Shuying Wa;Jie Wang;Qing Yang - 通讯作者:
Qing Yang
Ga/GaSb nanostructures: Solution-phase growth for high-performance infrared photodetection
Ga/GaSb 纳米结构:用于高性能红外光电探测的溶液相生长
- DOI:
10.1007/s12274-022-4931-0 - 发表时间:
2022-11 - 期刊:
- 影响因子:9.9
- 作者:
Huanran Li;Su You;Yongqiang Yu;Lin Ma;Li Zhang;Qing Yang - 通讯作者:
Qing Yang
Wenxia Sima, Ming Yang, Qing Yang, Tao Yuan, and Mi Zou. Experiment on a Novel Method for Fundamental Ferroresonance Suppression
司马文霞、杨明、杨青、桃源、邹弥。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.9
- 作者:
Ming Yang;Qing Yang;Tao Yuan;Mi Zou - 通讯作者:
Mi Zou
ZnO Belt-Like Structures Grown Using ZnS Substrates with Ga Droplets
使用带有 Ga 液滴的 ZnS 基底生长的 ZnO 带状结构
- DOI:
10.1587/transele.e92.c.1479 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Qing Yang;Miyoko Tanaka;Takahito Yasuda;H. Tatsuoka - 通讯作者:
H. Tatsuoka
Immobilization of phospholipid vesicles and protein-lipid vesicles containing red cell membrane proteins on octyl derivatives of large-pore gels.
将磷脂囊泡和含有红细胞膜蛋白的蛋白质-脂质囊泡固定在大孔凝胶的辛基衍生物上。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Qing Yang;M. Wallstén;P. Lundahl - 通讯作者:
P. Lundahl
Qing Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Yang', 18)}}的其他基金
SHF: Medium: PARIS: A New In-Sensor Computing Architecture for Intelligent 3-D Imaging Systems
SHF:中:PARIS:用于智能 3D 成像系统的新型传感器内计算架构
- 批准号:
2106750 - 财政年份:2021
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Introducing DIVOT: A Novel Architecture for Runtime Anti-Probing/Tampering on I/O Buses
SaTC:核心:中:介绍 DIVOT:一种用于 I/O 总线上运行时防探测/篡改的新型架构
- 批准号:
2027069 - 财政年份:2020
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
NeTS: EAGER: Intelligent Information Dissemination in Vehicular Networks based on Social Computing
NeTS:EAGER:基于社交计算的车联网智能信息传播
- 批准号:
1761641 - 财政年份:2017
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
NeTS: EAGER: Intelligent Information Dissemination in Vehicular Networks based on Social Computing
NeTS:EAGER:基于社交计算的车联网智能信息传播
- 批准号:
1644348 - 财政年份:2016
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
SHF: Small: Introducing Next Generation I/O Accelerator
SHF:小型:推出下一代 I/O 加速器
- 批准号:
1421823 - 财政年份:2014
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Introducing I-CASH, A New Disk IO Architecture
推出 I-CASH,一种新的磁盘 IO 架构
- 批准号:
1017177 - 财政年份:2010
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Understanding, Analyzing, and Designing Storage Subsystem Architectures for Maximum Data Recoverability
了解、分析和设计存储子系统架构以实现最大的数据可恢复性
- 批准号:
0811333 - 财政年份:2008
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
SGER: Validation and Evaluation of A New Data Replication Technology
SGER:新数据复制技术的验证和评估
- 批准号:
0610538 - 财政年份:2006
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
ITR--Benchmarking and Profiling Tools for Disk I/O and Networked Storage Systems
ITR--磁盘 I/O 和网络存储系统的基准测试和分析工具
- 批准号:
0312613 - 财政年份:2003
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Boosting Web Server Performance Using DRALIC----Distributed RAID and Location Independence Caching
使用 DRALIC 提升 Web 服务器性能----分布式 RAID 和位置独立缓存
- 批准号:
0073377 - 财政年份:2000
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
相似海外基金
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
- 批准号:
2335807 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2335624 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Adapting Economic Games to Personalize Privacy and Security Nudges
EAGER:DCL:SaTC:实现跨学科合作:调整经济游戏以个性化隐私和安全推动
- 批准号:
2209507 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SaTC: Quantifying the Fair Value of Data and Privacy in Distributed Learning
EAGER:SaTC:量化分布式学习中数据和隐私的公允价值
- 批准号:
2232146 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning
协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习
- 批准号:
2140411 - 财政年份:2021
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning
协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习
- 批准号:
2140477 - 财政年份:2021
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Privacy Enhancing Techniques and Innovations for AI-Cybersecurity Cross Training
EAGER:SaTC-EDU:人工智能-网络安全交叉培训的隐私增强技术和创新
- 批准号:
2038029 - 财政年份:2020
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SaTC: Collaborative: Addressing Social Media-Related Cybersecurity and Privacy Risks with Experiential Learning Interventions
EAGER:SaTC:协作:通过体验式学习干预解决社交媒体相关的网络安全和隐私风险
- 批准号:
2008634 - 财政年份:2020
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SaTC: Collaborative: Addressing Social Media-Related Cybersecurity and Privacy Risks with Experiential Learning Interventions
EAGER:SaTC:协作:通过体验式学习干预解决社交媒体相关的网络安全和隐私风险
- 批准号:
2006588 - 财政年份:2020
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2039408 - 财政年份:2020
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant














{{item.name}}会员




