CAREER: Nanomechanics of Bacterial Mucoadhesion and Growth on Healthy and Diseased Human Gut Mucus
职业:健康和患病人类肠道粘液上细菌粘膜粘附和生长的纳米力学
基本信息
- 批准号:2338518
- 负责人:
- 金额:$ 71.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2029-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award will support fundamental research to determine how differences in the molecular structures of healthy and diseased mucus in the human gut can alter the adhesion of bacteria on mucus. Intestinal mucus is the first line of microbial defense. A wide range of human gut disorders can be caused by biofilm invading the mucus. This is a challenging problem to study due to complex interlinked factors of how mucus molecules assemble, how bacteria adhere to mucus, and how mucosal biofilm is shed in the human gut. This research project will use computational modeling and simulations to obtain nanoscale insights on these factors. These insights will help to accelerate the design of mucoadhesive therapeutics or antimicrobials for treating human gut disorders. The research program will also bridge pathways towards multidisciplinary graduate education for undergraduate students, especially from underrepresented groups, by integrating engineering, biological, and humanistic sciences through an online project-based summer course, the curriculum of the nonprofit educational organization, Station1, and the Cornell University’s Future Leaders in Aerospace and Mechanical Engineering (FLAME) program. The specific objectives of this research program are to use computational modeling and simulations to: 1) determine how the supramolecular assembly of mucins is altered by disease-related changes in glycan compositions and structures, and bacterial enzymatic degradation of glycans, 2) uncover the molecular mechanisms of bacterial adhesion on mucus surfaces, to investigate why glycan assemblies in enzymatically degraded and unhealthy mucins will have greatly differing bacterial binding characteristics compared to healthy mucins, and 3) unravel the effects of mucoadhesion on bacterial growth in mucus to probe how biofilms adhere to mucus and proliferate under the influence of mucus degradation and physiological mucus clearance. The mechanistic insights from this project will help to accelerate the design of mucoadhesive materials for drug delivery or antimicrobials for the human gut by revealing the supramolecular structures of mucus and their glycans, unraveling how bacteria recognize and adhere to highly heterogenous glycan domains, and determining how these differences in adhesive characteristics ultimately affect the shedding dynamics of mucosal biofilms. This project will also provide a critical steppingstone towards developing engineered living materials that specifically shapes the growth of biofilms for desired engineering purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个学院早期职业发展(Career)奖将支持基础研究,以确定人类肠道中健康和患病粘液的分子结构差异如何改变细菌对粘液的粘附。肠道粘液是微生物的第一道防线。生物膜侵入黏液可引起多种人类肠道疾病。这是一个具有挑战性的研究问题,因为粘液分子如何聚集,细菌如何附着在粘液上,以及粘膜生物膜如何在人体肠道中脱落等复杂的相互关联的因素。这个研究项目将使用计算模型和模拟来获得这些因素的纳米级见解。这些见解将有助于加速设计用于治疗人类肠道疾病的黏液疗法或抗菌剂。该研究项目还将通过一个基于在线项目的暑期课程、非营利教育组织Station1的课程以及康奈尔大学航空航天与机械工程未来领导者(FLAME)项目,为本科生(特别是来自代表性不足群体的学生)整合工程、生物和人文科学,搭建通往多学科研究生教育的桥梁。该研究计划的具体目标是使用计算建模和模拟来:1)确定粘蛋白的超分子组装是如何被与疾病相关的聚糖组成和结构的变化所改变的,以及细菌对聚糖的酶降解;2)揭示细菌粘附在黏液表面的分子机制,研究为什么酶降解和不健康的粘蛋白中的聚糖组装与健康的粘蛋白相比具有很大不同的细菌结合特性。3)揭示黏液黏附对细菌生长的影响,探讨在黏液降解和生理黏液清除的影响下,生物膜如何粘附黏液并增殖。通过揭示粘液及其聚糖的超分子结构,揭示细菌如何识别和粘附高度异质的聚糖结构域,并确定这些粘附特性的差异最终如何影响粘膜生物膜的脱落动力学,该项目的机制见解将有助于加速用于人类肠道药物输送或抗菌剂的黏附材料的设计。该项目还将为开发工程生物材料提供一个关键的垫脚石,这些材料专门用于为所需的工程目的塑造生物膜的生长。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingjie Yeo其他文献
Characterization of Mechanical and Physical Properties of Silica Aerogels Using Molecular Dynamics Simulation
使用分子动力学模拟表征二氧化硅气凝胶的机械和物理性能
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jingjie Yeo;Jincheng Lei - 通讯作者:
Jincheng Lei
Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths
不同长度石墨烯和硅烯单层热导率的分子动力学分析
- DOI:
10.1166/jctn.2014.3568 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jingjie Yeo;Zishun Liu - 通讯作者:
Zishun Liu
Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins
- DOI:
10.1021/acsbiomaterials.1c00018 - 发表时间:
2021 - 期刊:
- 影响因子:5.8
- 作者:
Yimin Qiu;Chenxi Zhai;Ling Chen;Xiaoyan Liu;Jingjie Yeo - 通讯作者:
Jingjie Yeo
Molecular dynamics modelling of EGCG clusters on ceramide bilayers
神经酰胺双层上 EGCG 簇的分子动力学建模
- DOI:
10.1063/1.4938968 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jingjie Yeo;Yuan Cheng;Weifeng Li;Yong Zhang - 通讯作者:
Yong Zhang
Antiviral discovery using sparse datasets by integrating experiments, molecular simulations, and machine learning
通过整合实验、分子模拟和机器学习,利用稀疏数据集进行抗病毒药物发现
- DOI:
10.1016/j.xcrp.2025.102554 - 发表时间:
2025-05-21 - 期刊:
- 影响因子:7.300
- 作者:
Angela Cesaro;Fangping Wan;Haoyuan Shi;Kaiyang Wang;C. Mark Maupin;Matt L. Barker;Jiqian Liu;Stephen J. Fox;Jingjie Yeo;Cesar de la Fuente-Nunez - 通讯作者:
Cesar de la Fuente-Nunez
Jingjie Yeo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Probing the nanomechanics of single grain boundary with decorated solutes
用修饰溶质探测单晶界的纳米力学
- 批准号:
DE200101105 - 财政年份:2022
- 资助金额:
$ 71.96万 - 项目类别:
Discovery Early Career Researcher Award
Nanomechanics of Tubulin Extraction from Microtubules and Adhesin Catch-Bond Rupture
从微管中提取微管蛋白的纳米力学和粘附素捕获键断裂
- 批准号:
2139572 - 财政年份:2022
- 资助金额:
$ 71.96万 - 项目类别:
Standard Grant
Isolating Field Effects in Sintering via Ultrahigh Temperature In Situ Nanomechanics
通过超高温原位纳米力学隔离烧结中的场效应
- 批准号:
2207292 - 财政年份:2022
- 资助金额:
$ 71.96万 - 项目类别:
Continuing Grant
PeakForce TUNA and NanoMechanics Lab AFM Upgrade
PeakForce TUNA 和纳米力学实验室 AFM 升级
- 批准号:
RTI-2022-00346 - 财政年份:2021
- 资助金额:
$ 71.96万 - 项目类别:
Research Tools and Instruments
REU Site: Renewal of Summer Internships in Nanomaterials, Nanomechanics, and Leadership Training in Engineering
REU 网站:纳米材料、纳米力学和工程领导力培训暑期实习续期
- 批准号:
2046167 - 财政年份:2021
- 资助金额:
$ 71.96万 - 项目类别:
Standard Grant
Nanomechanics on rewritable material strength by anomalous electrons
反常电子可重写材料强度的纳米力学
- 批准号:
20H05653 - 财政年份:2020
- 资助金额:
$ 71.96万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Scalable and reversible computing with integrated nanomechanics
具有集成纳米力学的可扩展和可逆计算
- 批准号:
LP190101159 - 财政年份:2020
- 资助金额:
$ 71.96万 - 项目类别:
Linkage Projects
Isolating Field Effects in Sintering via Ultrahigh Temperature In Situ Nanomechanics
通过超高温原位纳米力学隔离烧结中的场效应
- 批准号:
1922867 - 财政年份:2019
- 资助金额:
$ 71.96万 - 项目类别:
Continuing Grant
LEAP-HI: Ultra-Low Power Computing: A Disruptive Approach Through a New Integrated Nanomechanics Framework
LEAP-HI:超低功耗计算:通过新的集成纳米力学框架的颠覆性方法
- 批准号:
1854702 - 财政年份:2019
- 资助金额:
$ 71.96万 - 项目类别:
Standard Grant
Piezoresistive Sensing Platform for High-Throughput Single Platelet Nanomechanics
用于高通量单血小板纳米力学的压阻传感平台
- 批准号:
1711259 - 财政年份:2017
- 资助金额:
$ 71.96万 - 项目类别:
Standard Grant