CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy

职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化

基本信息

  • 批准号:
    2338558
  • 负责人:
  • 金额:
    $ 60.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Non-Technical Summary: Ferroelectric materials are characterized by their ability to form local regions with spontaneous electric polarization (domains) that can be switched with an external electric field. This characteristic makes them attractive for information technologies such as memory and transistors. In particular, ferroelectric materials with a fluorite crystal structure are gaining prominence for next-generation memory and transistors. This is attributed to their superior scalability and compatibility with complementary metal-oxide-semiconductor processing, advantages not shared by conventional ferroelectric materials adopting a perovskite structure. However, as material dimensions shrink for high-density processing and devices integrate diverse materials, understanding and correlating domain structures with synthesis processes and ferroelectric performance pose challenges. This project, supported by the Ceramics Program in the Division of Materials Research, aims to address this challenge by developing novel characterization methods based on advanced electron microscopy techniques and in situ biasing experiments. This approach enables quantitative analysis of static and dynamic domain structures, producing reliable correlation of structural properties to ferroelectric switching characteristics. This, in turn, provides insights into new materials design principles for targeted ferroelectric performance. Aligned with the research, this Ceramics CAREER award supports the launch of a K-12 microscopy school for middle-school students from underrepresented schools in northern Florida. The goal of this outreach activity is to increase the participation of underrepresented students in the STEM workforce through hands-on activities in highly collaborative learning environments. In addition, this CAREER award facilitates the development of online learning modules on electron microscopy techniques and image processing methods by incorporating video tutorials and custom image analysis tools. These educational materials plan to be published and maintained on the PI group webpage and another open online platform (nanoHub.org), increasing accessibility and usability within the scientific community. Technical Summary: Harnessing thermodynamically metastable phases opens up new opportunities to control the properties of ceramic materials, thereby creating novel functionalities for real-world applications. However, identifying materials design pathways to stabilize targeted metastable materials poses challenges due to the difficulties in characterizing the structures of the ground-state and metastable phases and understanding their evolution under in-service conditions. To overcome this challenge and explore the science of controlling metastable ceramic materials, this CAREER award aims to characterize the mechanisms of the formation and evolution of metastable polar phases in nanoscale fluorite-structured ferroelectrics. Objectives include (i) developing high-precision phase indexing methods for identifying metastable polymorphs in hafnium oxide thin films, a model fluorite-structured ferroelectric material, (ii) establishing microstructure texturing for phase-pure nanoscale ferroelectric materials, (iii) building process-structure-property relationships by correlating structural and electrical properties, and (iv) elucidating polarization switching mechanisms using in situ biasing experiments. This project, supported by the Ceramics Program, employs scanning electron nanobeam diffraction and machine learning-aided image processing methods for unambiguous identification of metastable phases in ferroelectric thin films with quantitative structural information. Insights gained are expected to guide synthesis strategies for desirable metastable phases in ferroelectric thin films with controllable microstructure, expanding the materials design space for improved performance. The broader impact of this research includes the development of ceramic materials with technologically important functionalities arising from phase metastability or transition. Concurrently, this CAREER award supports education initiatives, including a K-12 microscopy school, online learning modules on electron microscopy for students at various levels, and research internship opportunities for underrepresented undergraduate students. The comprehensive education and outreach activities aim to increase awareness of cutting-edge ceramic materials research and prepare a diverse group of students for careers in STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:铁电材料的特征在于它们形成具有自发电极化(畴)的局部区域的能力,所述自发电极化(畴)可以用外部电场切换。这一特性使它们对存储器和晶体管等信息技术具有吸引力。特别是,具有氟石晶体结构的铁电材料在下一代存储器和晶体管中越来越重要。这归因于它们的上级可扩展性和与互补金属氧化物半导体处理的兼容性,这些优点是采用钙钛矿结构的常规铁电材料所不具有的。然而,随着高密度加工的材料尺寸缩小和器件集成不同的材料,理解和关联域结构与合成工艺和铁电性能提出了挑战。该项目由材料研究部陶瓷项目支持,旨在通过开发基于先进电子显微镜技术和原位偏置实验的新型表征方法来应对这一挑战。这种方法能够定量分析静态和动态畴结构,产生可靠的相关性的结构特性铁电开关特性。这反过来又为针对铁电性能的新材料设计原理提供了见解。与这项研究相一致,这个陶瓷职业奖支持在佛罗里达北方代表性不足的学校为中学生推出K-12显微镜学校。这项推广活动的目标是通过在高度协作的学习环境中开展实践活动,增加代表性不足的学生在STEM劳动力中的参与。此外,该职业奖通过结合视频教程和自定义图像分析工具,促进了电子显微镜技术和图像处理方法的在线学习模块的开发。这些教育材料计划在PI小组网页和另一个开放的在线平台(nanoHub.org)上发布和维护,以提高科学界的可访问性和可用性。技术总结:利用介稳相为控制陶瓷材料的性能开辟了新的机会,从而为现实世界的应用创造了新的功能。然而,由于难以表征基态和亚稳相的结构并理解其在使用条件下的演变,确定材料设计途径以稳定目标亚稳材料带来了挑战。为了克服这一挑战并探索控制亚稳陶瓷材料的科学,该CAREER奖旨在表征纳米级萤石结构铁电体中亚稳极性相的形成和演变机制。目标包括(i)开发用于识别氧化铪薄膜(一种模型萤石结构铁电材料)中的亚稳多晶型物的高精度相位索引方法,(ii)建立用于相位纯纳米级铁电材料的微结构纹理,(iii)通过关联结构和电性能来建立工艺-结构-性能关系,以及(iv)使用原位偏置实验阐明极化切换机制。该项目由陶瓷计划支持,采用扫描电子纳米束衍射和机器学习辅助图像处理方法,通过定量结构信息明确识别铁电薄膜中的亚稳相。所获得的见解,预计将指导合成策略的理想的亚稳相的铁电薄膜具有可控的微观结构,扩大材料的设计空间,以提高性能。这项研究的更广泛的影响包括陶瓷材料的发展与技术上的重要功能所产生的相亚稳态或过渡。同时,该职业奖支持教育计划,包括K-12显微镜学校,电子显微镜在线学习模块,为各级学生提供电子显微镜,并为代表性不足的本科生提供研究实习机会。这一综合性的教育和推广活动旨在提高人们对尖端陶瓷材料研究的认识,并为STEM领域的职业生涯培养多样化的学生群体。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Honggyu Kim其他文献

Interfacially enhanced superconductivity in Fe(Te,Se)/Bi4Te3 heterostructures.
Fe(Te,Se)/Bi4Te3 异质结构中的界面增强超导性。
  • DOI:
    10.1002/adma.202401809
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    An;Qiangsheng Lu;Eitan Hershkovitz;M. Crespillo;A. Mazza;Tyler Smith;T. Z. Ward;G. Eres;Shornam Gandhi;Meer Muhtasim Mahfuz;Vitalii Starchenko;Khalid Hattar;Joon Sue Lee;Honggyu Kim;Rob G. Moore;Matthew Brahlek
  • 通讯作者:
    Matthew Brahlek
Unprecedented enhancement of piezoelectricity of wurtzite nitride semiconductors via thermal annealing
通过热退火实现纤锌矿氮化物半导体压电性的前所未有的增强
  • DOI:
    10.1038/s41467-025-59179-2
  • 发表时间:
    2025-05-03
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Shubham Mondal;Md Mehedi Hasan Tanim;Garrett Baucom;Shaurya S. Dabas;Jinghan Gao;Jiangnan Liu;Zhengwei Ye;Venkateswarlu Gaddam;Aiden Ross;Long-Qing Chen;Honggyu Kim;Roozbeh Tabrizian;Zetian Mi
  • 通讯作者:
    Zetian Mi
Hardenability and microstructural evolution of a precipitation strengthened Nisub50/subTisub21/subHfsub25/subAlsub4/sub alloy
一种沉淀强化的 Ni50Ti21Hf25Al4 合金的淬透性和微观结构演变
  • DOI:
    10.1016/j.jallcom.2024.178088
  • 发表时间:
    2025-01-05
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Flavia da Cruz Gallo;Yang Yang;Eitan Hershkovitz;Monica Kapoor;Hunter B. Henderson;Michael S. Kesler;Honggyu Kim;Michele V. Manuel
  • 通讯作者:
    Michele V. Manuel
Unsupervised machine learning and cepstral analysis with 4D-STEM for characterizing complex microstructures of metallic alloys
用于表征金属合金复杂微观结构的无监督机器学习和 4D-STEM 倒谱分析
  • DOI:
    10.1038/s41524-024-01414-3
  • 发表时间:
    2024-09-18
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Timothy Yoo;Eitan Hershkovitz;Yang Yang;Flávia da Cruz Gallo;Michele V. Manuel;Honggyu Kim
  • 通讯作者:
    Honggyu Kim
Anisotropic Suppression of Martensitic Transformation in Precipitation-Hardened NiTiHf High-Temperature Shape Memory Alloys
  • DOI:
    10.1007/s11837-025-07242-0
  • 发表时间:
    2025-03-11
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Eitan Hershkovitz;Timothy Yoo;Flavia da Cruz Gallo;Garrett Baucom;Michele V. Manuel;Honggyu Kim
  • 通讯作者:
    Honggyu Kim

Honggyu Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Honggyu Kim', 18)}}的其他基金

Elucidating the Impact of Nanoscale Strain and Concentration Fields on Martensitic Transformations in NiTiHf-based Shape Memory Alloys
阐明纳米级应变和浓度场对 NiTiHf 基形状记忆合金马氏体相变的影响
  • 批准号:
    2226478
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant

相似海外基金

Elucidating the role of LL-37/matrix metalloproteinases signaling in mycosis fungoides mass formation
阐明 LL-37/基质金属蛋白酶信号在蕈样肉芽肿肿块形成中的作用
  • 批准号:
    23K19525
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Elucidating planet formation using chondrule oxygen fugacity
利用球粒氧逸度阐明行星形成
  • 批准号:
    2887731
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Studentship
Elucidating the immunology of autoantibody formation and function in COVID-19
阐明 COVID-19 中自身抗体形成和功能的免疫学
  • 批准号:
    10639707
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
Elucidating Bio-Nano Interface Atomic Structure and Peptide Directed Nanoparticle Formation
阐明生物纳米界面原子结构和肽引导纳米颗粒的形成
  • 批准号:
    2304833
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
Elucidating the formation of modern urban infrastructure focusing on the 'chimata' as places for crossing bounders
阐明现代城市基础设施的形成,重点关注“chimata”作为跨越边界的场所
  • 批准号:
    23K04058
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the Role of PDGF Signaling in Testis Formation
阐明 PDGF 信号在睾丸形成中的作用
  • 批准号:
    23K15775
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidating the mechanism of charge density wave formation using phonon spectroscopy techniques
使用声子光谱技术阐明电荷密度波形成的机制
  • 批准号:
    22K14009
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidating of molecular mechanism by which endocytosis regulates NLRP3 inflammasome formation and its phycological significance
阐明内吞作用调节NLRP3炎症小体形成的分子机制及其生理学意义
  • 批准号:
    22K07140
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the functions of zonula occludens (ZO) proteins in regulating chemical synapse formation
阐明闭合带 (ZO) 蛋白在调节化学突触形成中的功能
  • 批准号:
    486398
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Studentship Programs
Elucidating the roles of contextual stimuli in the formation of habit and addiction
阐明情境刺激在习惯和成瘾形成中的作用
  • 批准号:
    22K03200
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了