CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity

职业:制造具有超高导电性的连续网络石墨烯-铜复合材料

基本信息

  • 批准号:
    2338609
  • 负责人:
  • 金额:
    $ 66.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant supports research to establish the basis of a new manufacturing technique for the fabrication of ultrahigh electrical conductivity materials. The research exploits the excellent electrical conductivity of graphene, an emerging two-dimensional (2D) carbon nanomaterial, within a pure copper matrix. Fundamental multiscale and multi-physics studies will be performed in order to understand the fabrication and properties of graphene-copper composites critical to the achievement of scientific and technological advancements in high conductivity materials. The availability of ultrahigh conductivity materials meets the ever-increasing demand for high performance electrical conductors in electric vehicles, portable devices, and power grids, which impacts various industries and, hence, the U.S. economy. New experimental methods will be developed for controlling the continuity of graphene networks within a copper matrix to achieve electrical conductivities significantly higher than that of pure copper. The manufacturing approach is generalizable to other carbon-metal composites consisting of low dimensional constituents within metal matrices for improved electrical and structural applications. This project provides interdisciplinary research, education, and training opportunities for high school students to postdoctoral researchers, ensuring participation from women and under-represented minority groups. Educational and research integration activities include developing modular demonstrations and laboratory tours for interactive teaching and learning experiences and offering new interdisciplinary courses and research programs. Carbon nanomaterials, such as carbon nanotube and graphene, have excellent electrical properties far exceeding those of pure metal conductors such as copper. To exploit these attractive properties, carbon nanomaterials are often dispersed in a copper matrix to fabricate carbon-copper composite conductors. However, these conductors suffer from low electrical performance due to the discontinuous interfaces between the dispersed nanocarbon materials and the copper matrix. This research project seeks to address these technical challenges by developing an innovative manufacturing technique involving chemical vapor deposition (CVD) and growth of continuous graphene films in a pre-compacted copper foam followed by a ‘gentle’ compression step. The ‘gentle’ compression ensures that the final densification of the graphene-coated copper foam occurs without damaging the continuous graphene films. This research aims to resolve fundamental questions about (1) the underlying mechanisms for the enhanced electrical properties of graphene-copper composites; (2) the role of the continuity of graphene networks in the composite on their overall material properties; and (3) size-dependent material behavior of the composite besides the direct effect of different graphene-to-copper volume ratios. Overcoming these technical challenges is essential for designing and manufacturing graphene-copper composite conductors with significantly enhanced electrical properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项学院早期职业发展(CALEAR)补助金支持为制造超高导电性材料的新制造技术奠定基础的研究。这项研究利用了石墨烯在纯铜基质中的优异导电性,石墨烯是一种新兴的二维(2D)碳纳米材料。将进行基础的多尺度和多物理研究,以了解石墨烯-铜复合材料的制备和性能,这对实现高导电性材料的科学和技术进步至关重要。超高导电性材料的可获得性满足了电动汽车、便携式设备和电网中对高性能导电体日益增长的需求,这影响了各个行业,从而影响了美国经济。将开发新的实验方法来控制铜基中石墨烯网络的连续性,以获得明显高于纯铜的电导率。该制造方法可推广到其他碳-金属复合材料,该碳-金属复合材料由金属基质中的低维成分组成,用于改善电气和结构应用。该项目为高中生和博士后研究人员提供跨学科的研究、教育和培训机会,确保妇女和代表性不足的少数群体的参与。教育和研究一体化活动包括开发模块演示和实验室参观,以获得互动教学和学习体验,并提供新的跨学科课程和研究计划。碳纳米材料,如碳纳米管和石墨烯,具有优异的电学性能,远远超过铜等纯金属导体。为了利用这些吸引人的特性,碳纳米材料通常被分散在铜基中来制备碳-铜复合导体。然而,由于分散的纳米碳材料与铜基之间的界面不连续,这些导体的电性能较低。该研究项目旨在通过开发一种创新的制造技术来解决这些技术挑战,该技术涉及化学气相沉积(CVD)和在预压紧的铜泡沫中生长连续的石墨烯薄膜,然后进行“温和”压缩步骤。温和的压缩确保了石墨烯涂层泡沫铜的最终致密化,而不会损坏连续的石墨烯薄膜。本研究旨在解决以下基本问题:(1)提高石墨烯-铜复合材料电学性能的基本机制;(2)复合材料中石墨烯网络的连续性对其整体材料性能的影响;(3)除了不同的石墨烯-铜体积比的直接影响外,复合材料的材料行为与尺寸的关系。克服这些技术挑战对于设计和制造具有显著增强的电气性能的石墨烯-铜复合导体至关重要。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wonmo Kang其他文献

Topographical depth reveals contact guidance mechanism distinct from focal adhesion confinement.
地形深度揭示了与粘着斑限制不同的接触引导机制。
  • DOI:
    10.1002/cm.21810
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Robitaille;Chunghwan Kim;J. Christodoulides;Patrick J Calhoun;Wonmo Kang;Jinny Liu;Jeff M. Byers;M. Raphael
  • 通讯作者:
    M. Raphael
A 3D printed tensile testing system for micro-scale specimens.
用于微型样品的 3D 打印拉伸测试系统。
  • DOI:
    10.1063/5.0172671
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    W. J. Choi;Christopher Rudolf;Hamid Safari;M. F. Riyad;Maxwell Kulak;Junghoon Yeom;Wonmo Kang
  • 通讯作者:
    Wonmo Kang
Expression and purification recombinant human dentin sialoprotein in <em>Escherichia coli</em> and its effects on human dental pulp cells
  • DOI:
    10.1016/j.pep.2012.03.005
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ye-Rang Yun;Hae-Won Kim;Wonmo Kang;Eunyi Jeon;Sujin Lee;Hye-Young Lee;Cheol-Hwan Kim;Jun-Hyeog Jang
  • 通讯作者:
    Jun-Hyeog Jang

Wonmo Kang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
  • 批准号:
    2338968
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
Enabling Continuous Manufacturing of mRNA Vaccines
实现 mRNA 疫苗的连续生产
  • 批准号:
    2868915
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Studentship
Quantum Dot synthesis in Continuous Flow via Self-Optimising Nanoscale Manufacturing Platforms
通过自优化纳米级制造平台在连续流中合成量子点
  • 批准号:
    2783323
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Studentship
Prosperity Partnership in Innovative Continuous Manufacturing for Industrial Chemicals (IConIC)
工业化学品创新连续制造繁荣合作伙伴关系 (IConIC)
  • 批准号:
    EP/X025292/1
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Research Grant
SBIR Phase I: Continuous, Scalable Crystallizer for Pharmaceutical Manufacturing
SBIR 第一阶段:用于药品制造的连续、可扩展结晶器
  • 批准号:
    2233759
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
A Scalable Continuous Production Platform for Large-Scale Manufacturing of Therapeutic Exosomes
用于大规模生产治疗性外泌体的可扩展连续生产平台
  • 批准号:
    10739425
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
STTR Phase I: Ultrasonic Measurement Instrument for Pharmaceutical Tablet Design, Development, and Continuous Manufacturing
STTR 第一阶段:用于药物片剂设计、开发和连续制造的超声波测量仪器
  • 批准号:
    2051895
  • 财政年份:
    2022
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
On-demand continuous flow manufacturing of cannabidiol (CBD) and other cannabinoids
大麻二酚 (CBD) 和其他大麻素的按需连续流制造
  • 批准号:
    570513-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Alliance Grants
SBIR Phase I: Continuous Manufacturing for Nucleic Acid Lipid Nanoparticles to Improve the Supply Chain of Therapeutics and Vaccines (COVID-19)
SBIR 第一阶段:连续生产核酸脂质纳米粒子,以改善治疗药物和疫苗的供应链 (COVID-19)
  • 批准号:
    2151477
  • 财政年份:
    2022
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了