CAREER: Compactness in Incompact Worlds

职业:不紧凑世界中的紧凑性

基本信息

  • 批准号:
    2339018
  • 负责人:
  • 金额:
    $ 50.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

The field of model theory studies classes of structures: groups, fields, graphs. This is a broad field to study, so important distinctions are made based on how the class of structures is described (or axiomatized). If the class is describable in first-order logic, it is called an elementary class. First-order logic has many powerful properties, especially the property of compactness. Compactness allows model theorists to build structures with exotic properties and has driven much of the model theory of elementary classes, most notably classification theory. However, many classes of structures are not describable in first-order logic (these are called nonelementary classes). Lacking compactness, the development of nonelementary model theory and classification theory has proceeded much slower than its elementary counterpart. Recent work in nonelementary classes has shown that various fragments of compactness can still hold in some nonelementary classes and are still powerful enough to prove various results of elementary classification theory. The PI will develop more of these fragments in nonelementary classes. Additionally, the PI will run a program to build research infrastructure at their home institution (an R2 institution and HSI). This program will support undergraduates conducting research in logic, supported by a speaker series that will build connections between expert logicians and faculty and students.This research will develop fragments of compactness in a variety of ways. From category theory, methods from accessible categories and from topoi will be used to find compactness principles in certain nonelementary classes. Drawing on model theory and set theory, generalized indiscernibles and generalizations of the Erdos-Rado theorem will find compactness principles that hold in all nonelementary classes. Further drawing on set theory, the connections between large cardinals and compactness principles (along with other model-theoretic ideas) will be extended. The connections formed in categorical logic will be extended to higher category theory to open new areas for model theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模型论领域研究结构类:群、域、图。这是一个广泛的研究领域,因此重要的区别是基于如何描述(或公理化)结构类。如果一个类可以在一阶逻辑中描述,则称之为初等类。一阶逻辑具有许多强大的属性,尤其是紧性属性。紧性允许模型理论家建立具有奇异性质的结构,并推动了许多基本类的模型理论,最著名的是分类理论。然而,许多结构类在一阶逻辑中是不可描述的(这些被称为非初等类)。由于缺乏紧凑性,非初等模型理论和分类理论的发展比其初等模型理论和分类理论的发展要慢得多。最近在非初等类中的工作表明,紧性的各种片段仍然可以在某些非初等类中成立,并且仍然足够强大,可以证明初等分类理论的各种结果。PI将在非初等类中开发更多的这些片段。此外,PI将运行一个计划,在其所在机构(R2机构和HSI)建立研究基础设施。 该计划将支持本科生进行逻辑研究,由一系列演讲者支持,这些演讲者将建立专家逻辑学家与教师和学生之间的联系。这项研究将以各种方式开发紧凑性的片段。 从范畴论,方法从可及范畴和从拓扑将被用来找到紧凑性原则,在某些非初等类。 利用模型论和集合论,广义不动点定理和埃尔多-拉多定理的推广将找到在所有非初等类中成立的紧性原理。 进一步借鉴集合论,大基数和紧性原理(沿着与其他模型论思想)之间的联系将得到扩展。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Boney其他文献

William Boney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Boney', 18)}}的其他基金

LEAPS-MPS: Fragments of Compactness
LEAPS-MPS:紧凑的碎片
  • 批准号:
    2137465
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1402191
  • 财政年份:
    2014
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Fellowship Award

相似海外基金

SPDEQFT: Stochastic PDEs meet QFT: Large deviations, Uhlenbeck compactness, and Yang-Mills
SPDEQFT:随机 PDE 满足 QFT:大偏差、Uhlenbeck 紧致性和 Yang-Mills
  • 批准号:
    EP/Y028090/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Fellowship
Loss of compactness phenomena for Dirichlet energy
狄利克雷能量的紧致性损失现象
  • 批准号:
    2879243
  • 财政年份:
    2023
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Studentship
Dualities via ComPactness, Openness, and their Symmetry
通过紧凑性、开放性及其对称性实现的二元性
  • 批准号:
    EP/Y015029/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Fellowship
Analysis and applications of nonlinear problems with lack of compactness
缺乏紧性的非线性问题的分析与应用
  • 批准号:
    RGPIN-2022-04213
  • 财政年份:
    2022
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Discovery Grants Program - Individual
A Compactness Analysis for Critical Elliptic Equations of the Caffarelli-Kohn-Nirenberg Type and Applications to Questions of Existence and Multiplicity
Caffarelli-Kohn-Nirenberg型临界椭圆方程的紧致性分析及其在存在性和多重性问题中的应用
  • 批准号:
    546917-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Compactness Analysis for Critical Elliptic Equations of the Caffarelli-Kohn-Nirenberg Type and Applications to Questions of Existence and Multiplicity
Caffarelli-Kohn-Nirenberg型临界椭圆方程的紧致性分析及其在存在性和多重性问题中的应用
  • 批准号:
    546917-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Convergence and compactness in VMO
VMO 中的收敛性和紧凑性
  • 批准号:
    564879-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
    University Undergraduate Student Research Awards
LEAPS-MPS: Fragments of Compactness
LEAPS-MPS:紧凑的碎片
  • 批准号:
    2137465
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Standard Grant
Explicit Proofs from Compactness and Saturation
紧致性和饱和性的显式证明
  • 批准号:
    2054379
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Standard Grant
A Compactness Analysis for Critical Elliptic Equations of the Caffarelli-Kohn-Nirenberg Type and Applications to Questions of Existence and Multiplicity
Caffarelli-Kohn-Nirenberg型临界椭圆方程的紧致性分析及其在存在性和多重性问题中的应用
  • 批准号:
    546917-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 50.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了